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The quasi-classical theoretical description of matter aggregation and solid-state cohesion at atomic level is 
briefly presented in connection with its multiple applications to atomic clusters and nanostructures. The 
formation of isolated atomic clusters of up to 160 atoms is presented and characterized with respect to 
geometric forms, atomic positions, inter-atomic distances, ground-states and isomers, binding energies, magic 
numbers, vibration spectra, and the derivation of single-particle properties is outlined, within the point-like 
ions approximation. The surface of a semi-infinite solid is characterized within the same approach, and the 
formation of clusters deposited on surfaces is described, with regard to similar physical and chemical 
information. Peculiar nanostructures are also presented, as resulted from computation processes, as an 
indication of the large variety of possible nanostructured forms. The extension of the theoretical tools to more 
complex situations, in particular to directional bonds and quantum corrections, is also discussed. 
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1. Introduction 
 

The tremendous upsurge of activity in nanotechnologies witnessed at present raises basic 
issues of matter aggregation and structuration at the atomic level. While enabling major 
breakthroughs in life sciences and medicine, ultraminiatural electronics, materials, tools and 
processes, and manipulating individual atoms at the same time, the nanoscale sciences provide a 
more direct, sensible representation of the atomic and molecular matter, together with a more 
accurate knowledge of the physical and chemical structures and processes at this level. Traditionally, 
the field bears relevance upon chemical bonding of molecules and solid-state bulk bodies. However, 
in-between there is an extremely large amount of various kinds of supramolecules, molecular 
aggregates, atomic clusters, nanostructures and nano-objects, either isolated or in various 
environments, sometime exhibiting intricate geometries and beautiful symmetries, with their own 
specific behaviour. This immense new realm that fills plenty in the ”room at the bottom” displays 
basically a quantum behaviour and size dependence. These issues are addressed in the present paper, 
from the perspective of the quasi-classical description of assemblies of valence electrons and charge-
compensating point like ionic cores, with particular emphasis on relevant physical and chemical 
information on various atomic clusters and nanostructures, both isolated or under various geometric 
constraints as, for instance, clusters deposited on surfaces. In particular, geometric forms, atomic 
positions, interatomic distances, binding energies, magic numbers and vibration spectra are 
presented, and the extension to single-particle properties and structured ionic cores is outlined. 
Within given approximation, the results are applicable to homo-atomic metallic formations. 
 
 

2. Theoretical  
 

In chemical binding the single-electron wave functions are superpositions of localized 
atomic-like orbitals and extended bond-like orbitals. Due to the great disparity in the spatial scales of 
the two types of orbital the problem of the nuclei-electrons interaction is separated into a purely 
atomic like part, a chemical-bond part, and a residual interaction, which can further be removed by 
using classical variation principles [1]. The atomic-like part can be treated by standard ab-initio 
wave functions method [2], while for the chemical-bond part a quasi-classical description has been 
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developed recently [3], in close connection with the density-functional method [4]. For the  chemical 
bond part we are left with an ensemble of electrons moving in a background of neutralizing effective 
charges in the valence upper shells of the ions. These charges are distributed in space according to 
the corresponding atomic-like orbitals, but we adopt here, for the sake of the simplicity, a point-like 
distribution 

 
where z*i are the effective charges (in units of electron charge e) and Ri denote the positions of N 
ions, i = 1, 2, ...N . Such a point-like ionic charge distribution bears a limited relevance upon certain 
s-, d- and f-metallic ions, where we may neglect the radial dependence of the atomic like orbitals and 
average out their angular dependence, but it is inadequate for an important, very large class of ions 
with p-valence orbitals, or with hybridized valence orbitals. The effective charges can, in principle, 
be obtained by solving the entire problem of nuclei-electrons interaction, as remarked above, but 
results are not yet available. However, for certain ions, within the point-like approximation, we may 
estimate the effective charges by making use of the atomic screening theory [5]. For instance, we get 
z* = 0.57 for Fe2+(iron), z* = 0.34 for Ba2+(barium), and z* = 0.44 for Na+ (sodium). Such 
estimations, together with the point-like approximation, render a status of model-calculations to the 
results presented herein. In addition, the theoretical treatment employed here is valid for a 
suffciently large number N of not-too-light atoms. 

Within the quasi-classical description of the Hartree-Fock equations [3] the chemical-bond 
orbitals are quasi-plane waves in the first approximation, and the electrons move in the Hartree 
selfconsistent field 

 
corresponding to the charge distribution given by (1), where q is a screening wave vector similar to 
the Thomas-Fermi wave vector, to be determined variationally. The self-consistency requires a 
linear relationship n = (q2/4π)ϕ between the electron density n and the potential ϕ, which allows a 
straightforward computation of the interaction energy. This energy includes the Coulomb attraction 
between electrons and ions and the Coulomb repulsions both between electrons and between ions, 
respectively. We call it potential energy, and it is given by 
 

 
where 
 

 
is the effective (pseudo-) potential acting between two ions separated by the distance  Rij =|Ri - Rj |. 
This inter-ionic potential is shown in Figs. 1 and 2. It has an attractive tail at long distances and is 
strongly repulsive at short distances. 

The interacting part in Epot is the only contribution which depends on the ionic positions, so 
that we may minimize this energy represented by the second term in the r.h.s. of (3) with respect to 
Ri (actually with respect to the dimensionless variables Xi = qRi) in order to get the equilibrium 
forms of the ensemble of ions; doing so, we get both the ground-state of the ionic aggregate and the 
isomers, which differ by slight changes in energy and ionic positions. They correspond to local 
minima of the potential energy (3). The minimum values of the interacting part in (3) is usually very 
small in comparison with the self-energy ionic part given by the first term in the r.h.s. of (3), so we 
may neglect this contribution in approximate estimations. The model of metal obtained here 
resembles very much the ancient Wigner-Seitz model [6]. 
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The quasi-classical description is based upon slight spatial variations of the electron density 

in extended chemical-bonds orbitals; this enables the linear self-consistency relationship given 
above between electron density and potential. Accordingly, such a linearization is in order for the 
kinetic energy of the electrons too; it reads1 Ekin = (27π2/640)q4Σi z*i . The quasi-classical energy 
Eq = Ekin + Epot is then obtained, where Epot is the ground-state minimum value of the potential 
energy (3), and minimized with respect to the screening wave vector q. It is easy to see that such a 
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minimum value exists; for homo-atomic aggregates it is given by q ≈0.77z*1/3, neglecting the small 
contribution of the interacting part to the potential energy at equilibrium. In this case we may also 
define an average inter-ionic distance a by aq ≈2.73, where X = 2.73 is the reduced distance where 
the inter-ionic potential (4) reaches its minimum value. 

The exchange energy in the Hartree-Fock equations admits plane waves as eigenstates. 
More, it remains unchanged for quasi-plane waves, i.e. for slight local changes in the electron 
density, as in the quasi-classical description, due to its non-local character2; it follows that screening 
does not a_ect it in this approximation, so we may simply add its (linearized) contribution 
Eex=-(9/32)q2Σiz*i to the quasi-classical energy Eq, with q determined above, to obtain the binding 
energy E = Eq + Eex. For homo-atomic aggregates the ground-state energy is given by 
E=(0.43z*7/3+0.17z*5/3), leaving aside the small contribution of the interacting part of (3) (which 
however is responsible for the non-thermodynamic behaviour and the size dependence). 

The theoretical scheme outlined above is a linearized Thomas-Fermi model in fact, as 
derived from the quasi-classical solution of the Hartree-Fock equations. It differs from the standard 
non-linear Thomas-Fermi model (characterized by n ~ϕ3/2) in that it exhibits binding of the 
interacting ions and electrons, in contrast to the latter where there is no binding.[8] The non-linear 
Thomas-Fermi model is valid in the limit of infinite ionic charges (so-called quasi-classical limit), 
while the linearized model presented here is the starting point of the quantum behaviour of matter 
aggregation, and it could represent the solution to chemical bonding Schwinger was alluding to [9]. 
It has been applied to heavy atoms (with atomic numbers Z »1) where the well-known binding 
energy -16Z7/3eV has been successfully reproduced (quantum corrections included), to a consistent 
analysis of bulk properties of a model of ”universal” metal, and to realistic estimations of the 
ionization potentials of metallic clusters [10]. The quasi-classical description as presented above is 
only the first step in a full treatment. It offers the great advantage of getting structured atomic 
ensembles with rather limited computational resources. On the other hand, it offers the possibility of 
pursuing consistently the so-called quantum corrections. The latter include the ab-initio computation 
of the effective charge parameters as indicated before, taking into account the entire problem of 
nuclei-electrons interaction, as well as the single-particle properties, in particular the single-electron 
energy levels of the electrons motion in the self-consistent potential ϕ, as given by (2), for instance 
[3]. These corrections bring certain changes in energies and, consequently, equilibrium ionic 
positions, as well as other relevant quantities. The quantum corrections are basically due to the 
strong variations of the electron density and self-consistent potential over small distances of the 
order of atomic distances. These deviations can be estimated, if one considers, for instance, the 
screening wave vector q as related to the average of the Fermi wave vector; doing so we obtain ~ 17 
% an accuracy of the quasi-classical results. Further on, the single-particle wave functions of the 
Hartree-Fock equations entail an inherent second-order uncertainty in the self-consistency scheme, 
which signals its limits; therefore, we conclude that, once the quantum corrections included, the 
results are valid within at most ~0.17 × 17 % ≈ 3 % accuracy, and this would be the limit of the 
approach. 
 

 
___________________________________ 
1 In atomic units e2/aH _= 27.2eV, where aH = h2/me2 ≈ 0.53 Å is the Bohr radius (m is the electron 
mass and h denotes the Planck constant). 
2 This ”rigidity” character of the exchange energy has been noticed probably for the first time by 
Slater [7] (see also Ref. [6]).  
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Figure 3  Ground-state mass spectrum of metallic clusters 

 
 

3. Metallic Clusters 
 
The first step in applying the method described above is to minimize the potential energy given by 
(3) and (4) with respect to the reduced ionic positions Xi = qRi. Since the X-dependence of the 
potential function Φ does not involve the nature of the ions, the equilibrium geometric forms found 
by such a minimization are universal. The minimization method is implemented by giving originally 
ionic positions randomly distributed in space, computing the forces at each position, and letting the 
ions move step by step in the direction of the forces, until an equilibrium is reached (actually until 
the forces are less than 10-4eV/Å). The equilibrium positions can correspond either to the ground-
state or to isomers. In order to distinguish the ground-state from the isomers we run several hundreds 
times the equilibrium process for each atomic aggregate, attempting to get a statistical ensemble as 
large as possible. In addition, for differentiating between local minima and saddle-points we 
compute also the vibration spectra in the harmonic-oscillator approximation. Finally, we compute 
the quasi-classical energy Eq, find out its minimum value and the screening wave vector q, add the 
exchange energy Eex and get the binding energy E for the ground-state, as described in Section 2. 
The latter exhibits small, irregular variations with respect to the number N of atoms; to put 
them clearly into evidence we compute also the so-called abundance, or mass spectrum, as 
given by D = ln(IN

2/IN+1IN-1) = E(N + 1) + E(N - 1) - 2E(N), where IN is the Boltzmann 
statistical weight for the ground-state. It is found that such a spectrum does not depend on 
the effective charges z* within reasonably large limits. This procedure has been applied to 
homo-atomic clusters of metallic ions up to N = 160. 
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      Figure 5 Highly symmetric metallic clusters (first row), displaying outer shells  
                      (second row).  
 
_______ _____ __ ________ 
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Figure 7  Ground-state vibration spectra of ground-state Fe-clusters. 

 
The mass spectrum of homo-atomic metallic clusters is shown in Fig. 3. It exhibits a 

sequence of high and very sharp peaks, corresponding to what we call magic clusters. 
Indeed, these magic clusters in their ground-states are much more stable as compared to 
their neighbours, and may possess a high symmetry, most of them a pentagonal one, like the 
centered icosahedron N = 13. 

Some of these magic clusters are shown in Fig. 4. For relatively small values of N 
we expect to get Plato’s perfect polyhedra. However, this is not always true. For instance, 
we obtain the tetrahedron (N = 4) and the octahedron (N = 6), but the hexahedron (cube, N 
= 8) and the dodecahedron (N = 20) are not ground-states (we get them as isomers), while 
the icosahedron prefers to be centered (N = 13). It seems that the principle of atomic 
packing in such magic clusters is a certain ”space economy”. Indeed, this can be shown 
convincingly on the three ”most magic” clusters shown in Fig. 5, with N = 45, 110 and 115, 
respectively. The first row in Fig. 5 shows a front view which displays the highly symmetric 
forms of these clusters, while their outer shells are shown in the second row; indeed, such 
clusters are made of multiple, closed geometric E(N)/N (eV) atomic shells, with one shell’s 
atoms placed just above the facets’ centers of another. 
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Figure 8  Ground-state energy per atom of Fe-clusters bs cluster size. 
 
 

These clusters display an outstanding five-fold symmetry, yet other magic clusters, though 
very close to a high symmetry, exhibits also slight, disconcerting imperfections, like the N = 113, 
144, or 148 clusters in Fig. 4. It is worth noting here that some of these structures have also been 
obtained either by other theoretical techniques, or have been identified experimentally [11], and the 
five-fold symmetry magic numbers like N = 13, 45, 115 are known as geometric, or icosahedral 
magic numbers. As regarding a possible comparison with experimental results a word of caution is 
in order here. First, it must be stressed that the mass spectrum given in Fig. 3 corresponds to the 
ground-states, while clusters are usually produced experimentally in a statistical ensemble at a non-
vanishing temperature.  
 Consequently, a statistical average is relevant for experimental abundance, which includes 
isomers beside the ground-state; this gives ”statistical”magic numbers N, as distinct from the present 
”geometric”, or ”ground-state” magic numbers given in Fig. 3. A table of isomers is given in Fig. 6 
for Fe-clusters, where we may notice an increase in the number of isomers on increasing size, as 
well as several ”white islands” placed approximately at the magic clusters (for instance at N = 13, 45 
and 115), as expected. Similarly, it is worth noting that slight differences in energy differentiate the 
isomers from the ground-states. Secondly, ”electronic” magic numbers may be obtained, as different 
from the two previous ones, from the filling up of the electron states in model potentials, like the 
well-known quadropole-deformed harmonic-oscillator potential. In particular, the latter potential is 
obtained from the self-consistent potential (2) in the long-wavelengths (continuum) limit [3], which 
may be relevant for other sets of experimental data, depending on the clusters nature and the 
particular conditions of producing these clusters. 

Having obtained the equilibrium ionic coordinates Xi by minimization of the potential 
energy, and the screening wave vector q from the minimum value of the quasi-classical energy, we 
may obtain the inter-ionic distances Rij = Xij/q at equilibrium; on the average they are of the order of 
2-3 Å . It is worth noting that for computing such quantities, as well as for computing the binding 
energy or the vibration spectra, one needs to know the nature of the atomic species, in particular the 
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effective charges z*. The vibration spectra for several magic clusters of Fe in the ground state are 

 
Figure 9 A Fe13(C2H2)6 cluster (Ref. 14, 15). 

 
 
shown in Fig. 7. One can notice the increase of low-energy vibration states density with increasing 
cluster size, as expected, as well as higher multiplicity of the vibration states for more symmetric 
clusters. The binding energy per atom for the ground state of Fe-clusters (z* = 0.57) is given in 
Fig. 8 vs cluster size N. The binding energies of such clusters are of the order of 5 - 6 eV per atom. 
These numerical values are in good agreement with the results of other computations [12]. In this 
respect, it is worth mentioning the large amount of work devoted to metallic clusters, by employing 
both ab-initio calculations, molecular dynamics, density functionals, or jellium-like models. 
Numerical data, when available, can be found, for instance, in Ref. 13. 

The results presented here suggest that metallic clusters produced experimentally by various 
techniques may have very likely equilibrium geometric forms like those given in Fig. 4 for their 
ground-states or slightly different ones for their isomers. Most metallic clusters serve as cores for 
more complex, nanostructured aggregates, like organo-metallic clusters (as we shall see in the next 
section), and the core geometry brings useful information in designing the structure and the 
functionality of the latter. The presence of the isomers, which are separated from the ground-state by 
small amounts of energy, is particularly interesting in giving indication about cluster stability and 
their possible tunneling between various geometric configurations. A privileged position in this 
connection has the magic clusters associated with ”white islands” in the isomer table in Fig. 6, but 
the origin of the rather wide energy gaps between the ground-state and the first excited state in this 
case is not known; at most, we can trace it back to a rather vague principle of ”space economy”, as 
said above. 
 
4. Peculiar nanostructures 
 

The theoretical model of atomic aggregation presented in Section 2 can also be applied to 
more complex clusters. Such a complex organic-metallic cluster is the iron-hydrocarbonated 
Fe13(C2H2)6 which has recently been synthesized experimentally [14]. Since each CH-radical may  
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bind to a Fe ion by taking one valence electron, it seems naturally to assume that 12 Fe-ions possess 
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Figure 12 An unstable hexagonal metallic sheet 
 

 
Figure 13 A metallic popcorn wire (unstable). 

 
half of the effective charge of a standard Fe-ion, i.e. z* = 0.57/2 = 0.28, and view the entire structure 
as consisting of 12 such Fe-CH ions and one standard Fe-ion (with effective charge z* = 0.57). 

Such a structure clusterizes into a centered perfect icosahedron as the one shown in Fig. 5 
for N = 13, which may be viewed as the core of the actual organic-metallic cluster Fe13(C2H2)6. 
Simple  arguments of a minimal interaction energy between the C2H2-acetylene radicals lead then to 
a symmetric arrangement of them on the surface of the Fe-core cluster, as shown in Fig. 9. The 
contribution of the metallic core to the binding energy has been estimated, as well as the interatomic 
distances, vibration spectrum and the electron charge distribution [15] getting thus useful 
preliminary information for a more detailed study, which must include the directional bonding of the 
C2H2- radicals. 

A more complex experiment has been run on computer by making use of the present theory. 
It consists of giving 83-unit cells of a bcc-metal and let the ions relax to equilibrium. Doing so, a 
huge cluster of N = 855 atoms has been obtained as shown in Fig.10, with a pretty disordered 
structure, which however preserves an approximate original bcc-symmetry in a core of about 3 unit 
cells, as shown in Fig. 11. The computations take a rather long time in this case, and the statistics of 
the results is poor enough to have a reliable structure. However, this may give useful indications as 
to how the translation symmetry of a bulk solid may appear on increasing the number of atoms, and 
the extent of the surface (finite-size) effects. It has also found that the isomers of such a chunk of 
solid are extremely numerous, within a narrow energy range just above the ground-state energy, as 
expected, but, what is very interesting, they are associated mainly with slight, multiple changes in 
the positions of the outer ions. It suggests that the surface of a very large cluster, or of a solid, might 
be fuzzy, as corresponding to a superposition of states with slightly different atomic positions, very 
similar to a liquid (it may be termed a ”quasi-liquid”). 

In some computer runnings various peculiar nanostructures have been obtained accidentally,  
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Figure 14  Two weakly interacting metallic clusters 

 
each with suggestive particularities. For instance, we got an atomic sheet with an almost perfect 
hexagonal symmetry, as shown in Fig. 12, which is unstable, as expected (it may be stabilized by 
depositing it on a surface); or unstable chains of metallic ions, the most interesting being the one 
shown in Fig. 13. It consists of a sequence of inter-twined, mutually rotated icosahedra, leaving 
outside one protruding icosahedral end-atom, which might be suggestive for a perfect probe tip in 
scanning microscopy. The chain is however unstable, as expected for such a simplified one-
dimensional model of metal, but its diameter is smaller than the inner diameter of a carbon nanotube, 
so the latter may act as a stabilizing support. The results obtained within the present theoretical 
approach for such low-dimensional nanostructures, beside their suggestive character, may be useful 
as a constitutive input for more elaborate theoretical models. 

Another very interesting situation appeared in a few computer runnings where a number of 
metallic ions aggregated spontaneously in a two-cluster structure as shown in Fig. 14. The two 
aggregates interact extremely weakly, and end by forming one connected cluster after a very long 
while. The occurrence of such disconnected atomic structures originates in the separable nature of 
the interaction (3) with respect to the ionic positions. 

Some of the peculiar nanostructures described above may be stabilized either by geometric 
constraints (as, for instance, depositing them on surfaces, as we shall see in the next section), or by 
dynamic constraints. Indeed, we may apply a tension for instance on the two end-atoms of, say, the 
perfect 13-atoms icosahedron (or more complex structures), as produced by two forces acting in 
opposite directions, and look for equilibrium forms of such a distorted cluster. It is found that there 
are several discrete equilibrium forms up to breaking off the cluster, and the transverse size of the 
cluster is successively diminished in steps on increasing the applied force. These steps are very close 
to ”atomic steps”, corresponding to one atom getting in-line with the rest along the applied force, 
suggesting an ”atomic quantization” of the cross-section of the sample. 
 
 

5. Metallic clusters deposited on surfaces 
 
The summation over ionic positions in the potential energy (3) can be restricted to certain space 
regions, for instance to a half-space corresponding to a semi-infinite solid with a free, plane surface 
at x = 0. In this case we may use the continuum approximation, i.e. we may replace the summation 
over ionic positions in (3) by integration. We apply this procedure first to the self-consistent 
potential φ given by (2) and obtain: 

 
 
where z* is the average effective charge and a denotes the average inter-ionic distance; as mentioned 
in Section 2 we may take a ~2.73/q and q ≈ 0.77z*1/3, as for a metal. Comparing the self-consistent 
potential (5) with the bulk contribution ϕ= 4πz*/q2a3 (obtained from (2) by integrating over the 
entire space), one can see that the surface brings its own contribution δϕ(x) = (2πz*/q2a3)(x/ |x|)e-q|x| 
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to the self-consistent potential, which, through the selfconsistency relationship n = (q2/4_)', entails a 
spill δn of the electrons over the surface and a charge double layer at the surface, as expected. The 
total charge distribution at the surface double layer is shown schematically in Fig.15.  

 
Figure 15 Charge distribution at the metallic surface double layer 

 
The work function of the solid can be computed from (5), obtaining ϕ= 4πz*/q2a3, as 

expected. The interaction energy -(1/2) dx·δϕδn associated with the electron double layer is  
-πz*2/2q3a6 (per unit area), and it acts like an additional uncertainty in the quasi-particle energy, 
giving rise to boundary (finite-size) lifetime. It leads also to a weak relaxation of the ionic positions 
at the surface, which, however, is beyond the accuracy of the present computations. On the other 
hand, the potential energy (3) can be estimated for a semi-infinite metal in the continuum 
approximation, leading to  

where the first term is the bulk contribution (N represents the number of ions in metal), while the 
second term is the surface contribution, A denoting the area of the cross-section; hence, one may 
derive the surface tension σ = πz*2/2q3a6 of a metal; it agrees with the energy given above for the 
electron double layer. 

Similarly, by using (3) and (4), we can estimate the interaction potential between a semi-
infinite metal and a metallic ion with an effective charge z*0 placed at distance x from the surface. 
We obtain 

where Es denotes the potential energy of the solid as given by (6). One can notice in (7) the self-
energy of the added ion and the last term which represents the solid-ion interaction potential. 

 
 Figure 16 Interaction potential of a metallic ion and of a semi-infinite metal  
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This potential has an attractive tail above the surface and a repulsive barrier beneath, as 
shown in Fig. 16. The attractive part is responsible for forming up clusters added to the surface, 
while the interplay between the attractive and repulsive parts may determine the penetration of 
added atoms just beneath the surface, leading to diffusion and interfaces between a solid and a 
deposited cluster. It is worth noting that this interaction potential varies over a scale distance ~ 1/q, 
which is smaller than the average inter-ionic distance a ~ 2.73/q. 

It is easy now, by making use of (7), to write down the potential energy of an ensemble of N 
metallic ions with effective charges z*i deposited on a metallic surface; it reads 
 

 
 
where the potentials Φ(Rij) are given by (4) and Xi denotes the x-coordinate of Ri. It is worth noting 
that the screening wave vector q in (8) is the one of the solid, as the latter prevails upon the 
deposited cluster in the thermodynamic limit. In this respect, the deposited clusters differ from 
isolated clusters which have their own screening wave vector, as resulting from the minimization of 
their quasi-classical energy. According to the theoretical approach presented in Section 2, the quasi-
classical energy of the deposited cluster is Eq = (27π2/640)q4Σi z*i + Epot - Es, and the binding energy 
is E = Eq - (9/32)q2Σi z*i. One can see here the separability of the general theoretical expression for 
the potential energy as given by (3) and (4) with respect to the ionic positions. We may also define 
an interaction energy from (8), between solid and a deposited cluster, by 

which may serve as a measure of the energy needed to separate the cluster off the surface (the 
difference in the cluster energy must be added, arising from its own screening wave vector 
corresponding to cluster relaxation). One can also check that the interaction energy (8) for the halves 
of a solid compensates exactly the surface energies of the two facets, as given by (6), as expected. 

The main problem of depositing clusters on surface is the minimization of the potential 
energy given by (8) with respect to the ionic positions Ri (in fact, with respect to the reduced 
positions qRi). We follow the same procedure employed for isolated clusters, as described in Section 
3, and illustrate the results here for Fe-clusters (z* = 0.57) deposited on Na surface (z* = 0.44). The 
ground-state mass spectrum for such clusters is shown in Fig. 17, up to N = 100. One can notice 
magic clusters deposited on surface like, for instance, those corresponding to N = 7, 14, 19, 23, 75, 
77, 85, 88, 94... They may acquire highly symmetric forms as those shown in Figure 18. 

 
 
 Figure 17 Ground-state mass spectrum of Fe-clusters deposited on Na-surface 
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 Figure 18 Magic Fe-clusters deposited on Na-surface: front view (upper rows) and top view 
                               (lower rows). 
 
_ _ _ _ _ _ _ 
_ _ _ _ _ _ _ 
_ _ _ _ _ _ _ 
_ _ _ _ _ _ _ 
_ _ _ _ _ _ _ 
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Figure 19 Ground-state energy per atom for Fe-clusters (3D, solid line) deposited on  
                 Na-surface vs cluster size, compared with monolayer cluster energy (2D, dashed  
                 line). 

 
Figure 20 A deposited cluster with one ion beneath the surface. 

 
 
The principle of their packing seems to be the same ”space economy”. For small values of N 

they arrange in rather regular polygons onto the surface, but with increasing N they start to construct 
up vertically, by adding successively multiple terraces, more or less regular; the overall 
constructions exhibit often a wonderfully intricate geometry, as one can see in Fig. 18 for N = 23, 
77, 94, suggesting hats, theaters, stadium, domes, etc. In general, there is a competition between 
growing up vertically and lying down horizontally along the surface. We obtain monolayers (2D 
clusters) as ground-states for N ≤ 7 and as isomers for N > 7, as shown in Fig. 19, where their 
binding energy is compared with the ground-state energy of deposited clusters (3D). We obtain also 
isomers, as expected, some of them with strange constructions close to instability (i.e. with high 
energies). There are many curiosities in constructing such deposited clusters, as for instance, the 
rather structureless island between N = 23 and N = 75 in Fig. 17, which is intriguing. 

Some of the constructions obtained here theoretically can be found in experimental 
works.[16] In this connection it is worth noting that the continuum approximation employed here is, 
in fact, unnecessary, though useful; it affects the proximity properties between clusters and surface, 
and, of course, the problem of the ”lattice constants” matching. 

Finally, it is worth presenting a very interesting situation shown in Fig. 20, where one added 
ion has penetrated beneath the surface, the rest having remained at the surface and formed there a 
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deposited cluster. The ion goes through the potential barrier shown in Fig. 16, and is kept 

 
 
 Figure 21 An ion diffused into solid from a deposited cluster. 
 
in equilibrium by the interplay between the metal attraction and the surface-cluster attraction, which 
act in opposite directions. Such a cluster exhibiting an incipient interface with the solid is always an 
isomer, i.e. its energy is higher than the ground-state energy of a cluster of the same size deposited 
on surface. There appears also the possibility of a penetrating ion to escape into the solid, as shown 
in Fig. 21, where the position of the ion in solid is practically undefined, i.e. this ion is free; it has 
diffused into the solid. A more sizeable number of atoms may penetrate beneath the surface, as 
shown in the first two pictures in Fig.22 for a 50-atoms cluster, or for a 100-atoms cluster which 
developed a well-defined incipient interface with the solid (last picture in Fig. 22). These formations 
are incipient quantum dots of a very small size. Such results are encouraging for applying the 
present theoretical approach to more complex situations, in particular to nanostructures exhibiting 
interfaces, or other geometric and dynamic particularities. 
 

6. Concluding remarks 
 

The theoretical approach presented here deals with matter aggregation at the atomic level. It 
is based on the quasi-classical solution to Hartree-Fock equations describing a neutral ensemble of 
Coulomb interacting ions and valence electrons. The main ingredient of the theory is an inter-ionic 
effective (pseudo-) potential, of the type given by (4) for point-like effective ionic charges. The 
model has been applied to several species of metallic ions, leading to formation of homo-atomic 
clusters, either isolated or deposited on surfaces, as well as to some peculiar nanostructures, both 
with geometric and dynamic constraints. It provides quantitative results for geometric forms, ionic 
positions, inter-ionic distances, binding energies, both of ground-states and isomers, clusters stability 
and vibration spectra. Magic clusters and magic numbers have been obtained for ground states, 
giving an insight into the geometric patterns of cluster aggregation. At this level, the theoretical 
approach has a first-step approximation character, the full treatment requiring the so called quantum 
corrections. These provide single-particle properties, like electron energy levels, ionization 
potentials, chemical affinities, as well as response to external fields, transport and various 
spectroscopic properties included. The quantum corrections set also the ground for treating the 
clusters magnetism. The latter originates mainly in the electron ferromagnetism, as caused by the 
exchange interaction, and the ionic paramagnetism; both are to be treated in the particular context of 
a single-domain (or a few domains) magnetism, and a fractional occupancy of the electron levels, as 
required by the effective charge parameters. Both localized and itinerant magnetic moments are 
specific to clusters magnetism, with particular properties, like high, inhomogeneous magnetization, 
super-paramagnetism, etc. In addition, the model must be further refined by taking into account the 
spatial structure of the ionic charge distribution, in particular its angular dependence in oriented 
chemical bonds. This would considerably enlarge the applicability of the theory to large classes of 
chemical species. 
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