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The quasi-classical theory of matter aggregation is briefly reviewed and the guiding principles of 
formation of the atomic clusters are discussed. The interaction potential of a metallic ion with a 
semi-infinite solid exhibiting a free plane surface is derived and atomic clusters deposited on 
surfaces are constructed. Binding energies, ground-states, magic geometries, isomers, inter-
atomic distances, vibration spectra and monolayers are thus obtained, and further developments 
are outlined. 
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1. Introduction 
 
Solid atomic aggregates occur through delocalization of the electrons in the upper valence 

shells. The chemical bond originates in a superposition of atomic-like orbitals and extended 
orbitals that vary slowly in space. Such a picture is amenable to a quasi-classical description of the 
Hartree-Fock equations. An atomic aggregate looks like an ensemble of electrons spinning around 
and the ionic cores left behind.[1] The ionic cores have effective charges z*i , where i is the label 
of the ion. These charges are distributed radially-symmetric, as for s-orbitals, or directionally, as 
for p, d, f-orbitals; several electrons in d- and f-orbitals may approximately be viewed as radially-
symmetric. In addition, such atomic-orbital charges may also be approximated for the beginning 
by point-like distributions. Most of the metallic ions fall in this class of s-, or d, f-orbitals. The 
e_ective charges may be estimated for atoms suffciently heavy by making use of the atomic 
screening theory. For instance, z8.44 for Na (sodium) and z_ = 0.57 for Fe (iron). Under the 
circumstances given above, within the quasi-classical description, the electrons in  anatomic 
aggregate move in a self-consistent Hartree potential 

 

 
 
where N is the number of ions, Ri denote their positions and q is a screening wavevector to be 
determined variationally. The well-know atomic units are used, namely the Bohr radius 
aH=h2/me2 = 0.53 Å and twice the rydberg e2/aH = 27.2 eV. Due to the self-consistency the electron 
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density n depends on the potential φ by n = (q2/4π)φ, so that we obtain the potential energy 

 
 

Figure 1 A free plane surface of a semi-infinite solid 
 
 
of the interacting electrons and ions (electron-electron and ion-ion Coulomb repulsions included), 
where 
 

 
 
are effective interaction (pseudo-) potentials between ions separated by distance Rij = |Ri - Rj |. 

The potential energy given by (2) is minimized with respect to Ri (actually qRi) in order to 
find the ionic equilibrium positions; this way, we determine the geometric forms of the atomic 
aggregates, both for their ground-states and isomers. Thereafter, the kinetic energy 
Ekin =  (27π2/640)q4Σi z*i is added, and the quasi-classical energy Eq = Ekin+Epot is minimized with 
respect to the screening wave vector q; finally the exchange energy Eex = -(9/32)q2Σi z*i is included 
to obtain the binding energy E = Eq + Eex. 

This theoretical approach has been applied to homo-atomic metallic clusters, where 
geometric magic numbers have been obtained, together with binding energies, inter-atomic 
distances and vibration spectra (up to N ~ 160) [2]. Leaving aside the small contribution of the 
interacting part in the potential energy at equilibrium, the screening wave vector reads 
approximately q ~0.77z*1/3 in this case, and the average inter-atomic distance may be estimated as 
a = Řij ~ 2.73/q; all the same, the binding energy is given by E = -N(0.43z*7/3 + 0.17z*5/3). 
Similarly, the theory has been used to estimate other, more complex structures, as, for instance, the 
equilibrium Fe-core structure of the iron-hydrocarbon Fe13(C2H2)6-cluster [3]. 

The above theoretical description is to be developed along two directions at least. First, the 
directional character of the atomic-like orbitals (as well as their radial dependence) must be 
included in order to obtain, for instance, p- or sp-orbitals atomic aggregates. Secondly, the 
quantum corrections must be included to the quasi-classical treatment, in order to get a more 
accurate knowledge of the electronic single-particle properties, like energy levels (or bands), 
ionization potential, chemical affinity, optical properties, polarizability, magnetic properties, etc. 
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An error of cca 17 % is estimated without quantum corrections, while including them may lead to 
an accuracy of up to cca 3 %, at most. Various hetero-atomic aggregates could then be studied 
with more confidence. 

Until then, the present theory can be employed to get a description of metallic surfaces or 
interfaces, or metallic clusters deposited on such surfaces, or atomic aggregates with various others 
geometric constraints. 
 
 

 
 

Figure 2 Electron density at the surface. 
 
 
 

 
2. Metallic surface 

 
The summation over ions in (1) can be restricted to a half-space, as for an semi-infinite 

solid with a free plane surface perpendicular to, say, the x-direction at x = 0. Such a surface is 
shown in Fig.1. In the continuum approximation we obtain the self-consistent potential 
 

 
where z* is the average effective charge and a denotes the average inter-atomic distance. When 
compared to the bulk contribution φ = 4πz*/q2a3 one can see that a dipolar potential δφ occurs at 
the surface, which gives rise to a spill over of the electrons and a surface charge double layer. The 
electron density n = (q2/4π)φ is shown in Fig.2, and the total charge density is plotted in Fig. 3 vs 
x. The work function of the solid as computed from (4) is φ, as expected. The interaction 
energy -1/2) R∫dx·δφδn associated with the electronic double layer (per unit area) is -πz*2/2q3a6, 
and it acts like an additional uncertainty in the quasi-particle energy giving rise to boundary 
(finite-size) lifetime; it also leads to a weak relaxation of the ionic positions at the surface. On the 
other hand, the  otential energy can be estimated from (2) and (3) for a semi-infinite solid; in the 
continuum  approximation we obtain 
 

 
 
where A is the area of the cross-section; therefore, the potential energy (5) includes a surface 
contribution (_z*2/2q3a6)A, beside the bulk contribution given by the first term (the interacting part 
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vanishes in the bulk continuum limit); the surface tension of the solid is σ = (πz*2/2q3a6), and it 
agrees with the double layer energy given above. 

Similarly, we can estimate the interaction potential between a semi-infinite solid and an 
ion with an effective charge z*0 placed at distance x from the surface; indeed, making use of (2) 
and (3),  

 

 
Figure 3 Charge distribution at the surface by-layer 

 

 
 

Figure 4 Interaction potential between an atom and a semi-infinite solid 
 
we get 

 
 
where Es is the potential energy of the solid as given by (5); the second term in (6) is the self-
energy of the added atom and the third term represents the interaction potential of the atom with 
the semi-infinite solid; it is shown in Fig. 4. This interaction potential exhibits a potential barrier 
just beneath the surface, and has an attractive part above; the latter is responsible of adsorbing 
additional atoms on the surface, and of stabilizing deposited atomic clusters. 

Now it is easy to write down the potential energy of an ensemble of N atoms of effective 
charges z*i deposited on the surface; it reads 



 
 

339

 

 
 
where the potentials Φ(Rij) are given by (3) and Xi is the x-coordinate of Ri. It is worth noting that 
the screening wave vector q is the one corresponding to the solid, as the latter prevails upon the 
deposited cluster in the thermodynamic limit. In this respect the deposited clusters differ from the 

 
Figure 5 Ground-state abundance spectrum and magic clusters deposited on surfaces 

 
isolated clusters, which have their own screening wave vector as it results from the minimization 
of their quasi-classical energy. The binding energy of a deposited cluster is given by E = Eq+Eex, 
where the quasi-classical energy is Eq = (27π2/640)q4Σi z*i + Epot - Es, and the exchange energy is 
given by Eex = -(9/32)q2Σi z*i ; the potential energy given by (7) is minimized with respect to the 
ionic positions Ri. It is worth noting that an interaction energy 
 

 
can be defined from (7), between the deposited cluster and the solid, which may serve as a 
measure of the energy needed to separate the cluster o_ the surface (the diferrence in the cluster 
energy must be added, arising from its own screening wave vector corresponding to the cluster 
relaxation). 

One can also notice that the interaction energy (8) for the halves of a solid compensates 
exactly the surface energies of the two faces, as given by (5). If two distinct solids are put in 
contact there is a diffusion of one into another across the interface, according to the tunneling 
through the interaction potentials given by (8). Finally, we note that the continuum approximation 
is not necessary, and we can treat the cluster deposition by preserving the discrete summations 
over fixed ionic positions in solid; we have adopted the continuum approximation here for the sake 
of the simplicity; the errors introduced on this occasion refer to the few atomic layers in the 
vicinity of the surface, and of course to the matching problem of the lattice constants. 
 

3. Clusters deposited on surface 
 

The main problem of depositing atomic clusters on a surface is the minimization of the 
potential energy (7) with respect to the ionic positions Ri (in fact with respect to qRi). Initially, we 
give positions Ri randomly distributed in space and let the ions move step by step along the forces 
until a local equilibrium is reached (corresponding to forces less than 10-4 eV/Å); this equilibrium 
is checked by computing the corresponding vibration spectra. For each number N of atoms the 
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procedure is repeated for a few hundreds times, in order to get the ground-state and the isomers; 
the latter are clusters higher in energy with slightly different ionic positions. This procedure has 
been applied to Fe-clusters (z*i = 0.57) deposited on Na-surface (z* = 0.44) up to N = 100. 

@'@'@'@'@'@'@'@'@'@'@'@'@'@'@ @'@'@'@'@'@'@'@'@'@'@'@'@'@'@'@'@'@'@  
Figure 6 Magic clusters deposited on a surface 

 
 

The original ionic positions are randomly distributed in space both below and above the 
surface of the solid; we find that equilibrium positions are reached mostly above the surface, as for 
deposited clusters. The binding energies E(N) have been computed for the ground-state of these 
clusters as indicated before, and abundance spectra D = ln(IN

2/IN+1IN-1) = E(N +1)+E(N-1)-2E(N) 
have been obtained, where IN is Boltzmann’s statistical weight. 

Such an abundance spectrum D is shown in Fig. 5; these spectra depend weakly on the 
nature of the clusters and of the substrate. Magic clusters deposited on surface are to be noted in 
Fig. 5, as, for instance, those corresponding to N = 7, 14, 19, 23, 75, 77, 85, 88, 94...; they acquire 
highly symmetric forms, as shown in Fig. 6. The rather structureless island between N = 23 and N 
= 75 is intriguing in Fig. 5. As a general rule, for small values of N atoms are adsorbed on the 
surface in a monolayer, forming up more-or-less regular polygons. On increasing the number of 
atoms, they distribute themselves both horizontally and vertically, giving rise to multilayer 
structures, with various, intricate geometries, and sometimes beautiful symmetries, as those 
corresponding for instance to N = 23, 77, 94. It is worth noting that their binding energies are 
higher in comparison with their monolayer  two-dimensional) versions (which are isomers), i.e. 
growing up vertically helps stabilizing the  clusters; such a comparison is shown in Fig. 7. In 
general, there is a competition between the two directions of growth, horizontal and vertical, and it 
is difficult to predict which would prevail for a given number of atoms. 

Bound states can also be obtained for clusters deposited on surfaces with parts pervading 
beneath the surface, as shown in Fig. 8. Indeed, the first two pictures in Fig. 8 show a 50-atoms 
cluster diffusing into solid, while the last picture in Fig. 8 exhibits a 100-atoms cluster developing 
an interface with the solid. These states are isomeric, and, in some cases, atoms may escape into 
the solid where they acquire free positions, i.e. they are no more bound to the cluster. Similar 
formations can be obtained for a large variety of situations, including both geometric constraints, 
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Figure 7 Ground-state energy per atom for Fe-clusters (3D, solid line) deposited on Na-surface 

vs number of atoms, as compared with monolayer cluster energy (2D, dashed line). 
_ 

 
 
 
 
 
 
 
 
 
 
_ 
_ 

Figure 8 A 50-atoms cluster diffusing into solid (first two pictures), a 100-atoms one developing 
an interface with the solid (last picture). 

 
like a deposition surface, and dynamic constraints, like applying external forces. 
 
 

4. Concluding remarks 
 

In conclusion, we may say that interaction potentials can be identified in the quasi-
classical description of atomic aggregation, between atoms and semi-infinite solids, which allow to 
analyze the deposition of the atomic clusters on surfaces. At the present level of computations the 
geometric forms of deposited metallic clusters are obtained, as well as binding energies, inter-
atomic distances and vibration spectra. Magic clusters are identified, deposited on surfaces, 
exhibiting, in general, high symmetries, both horizontally and vertically. Increasing the number of 
atoms they may intrude beneath the surface, giving thus the possibility of building up interfaces, 
and contacts, between two solids. Further investigations are pursued into extending the theory to 
directional chemical bonds and electronic single-particle properties. 
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