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COMPUTING BIPARTITE EDGE FRUSTRATION OF SOME NANOTUBES
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The smallest number of edges that have to be deleted from a molecular graph G to obtain a
bipartite spanning subgraph is called the bipartite edge frustration of G, denoted by ¢(G).
In this paper this number is computed for some important classes of nanotubes.
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1. Introduction

Let G = (V,E) be a simple graph, a graph without multiple edges and loops. A subgraph S
of G is a graph whose set of vertices and set of edges are all subsets of G. A spanning subgraph is
a subgraph that contains all the vertices of the original graph. The graph G is called bipartite if the
vertex set V can be partitioned into two disjoint subsets V; and V, such that all edges of G have
one endpoint in V; and the other in V,. Bipartite edge frustration of a graph G, denoted by ¢(G), is
the minimum number of edges that need to be deleted to obtain a bipartite spanning subgraph.

It is easy to see that ¢(QG) is a topological index and G is bipartite if and only if @(G) = 0.
Thus ¢(G) is a measure of bipartivity. It is a well-known fact that a graph G is bipartite if and only
if G does not have odd cycles. Holme, Liljeros and Edling introduced the edge frustration as a
measure in the context of complex network, [8].

In [5,6] Fajtlowicz claimed that the chemical stability of fullerenes is related to the
minimum number of vertices/edges that need to be deleted to make a fullerene graph bipartite. We
mention here that before publishing the mentioned papers of Fajtlowicz, Schmalz et al. [10]
observed that the isolated pentagon fullerenes (IPR fullerenes) have the best stability. Doslic [1],
presented some computational results to confirm this relationship. So it is natural to ask about
relationship between the degree of non-bipartivity of nanotubes and their stability.

Throughout this paper all graphs considered are finite and simple. Our notation is standard
and taken mainly from [7,9]. We encourage the reader to consult papers by Doslic [1-4] for
background material and more information on the problem. Our main results are the following two
theorems:

Theorem 1. Suppose E = TUC4Cg(R)[p,q], Figure 1, and F = TUC,Cs(S)[p,q], Figure 2,
are C4Cg nanotubes in which p and q are the number of rhombs and squares in each row and
column, respectively. Then ¢(F) =0 and
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Theorem 2. Suppose A = HCsC-[r,t], B = VCsCs[r,t], C = SC;sC[r,t] and D = HAC;C[r,t]

are CsC; nanotubes, where 2r is the number of pentagons in each period and t is the number of
periods, Figures 3-7. Then ¢(B) = ¢(C) = ¢(D) = 2rt and we have:
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We encourage the reader to consult papers by Diudea and his co-author for some
background material as well as basic computational methods on mathematical properties of
nanomaterials, [11-13].

2. Results and discussion

In this section the edge frustration number of five infinite class of nanotubes containing
TUC4Cs(R)[p,q], TUC4Cs(S)[p,q], HCsCs[r,t], VCsCy[r,t], SCsCs[r,t] and HACsCs[r,t] are
computed. At first, we compute @(TUC,Cg(R)), Figure 1. If p is even then obviousely the
molecular garph of TUC,4Cg(R)[p,q] is bipartite and so ¢(TUC4Cg(R)) = 0. Suppose p is odd. Then
E has a cycle of length 3p and so it is not bipartite. We notice that the subgraph H constructed
from G by deleting edges e, ..., €4, Figure 1, is biparetite. This implies that @(TUC4Cg(R)) < q.
On the other hand, it is clear that we cannot find less that q edges such that the graph constructed
from G by deleting them, is bipartite. Thus (TUC4Cg(R)) = q.

Fig. 1. The 2-dimensional Lattice of TUC4Cg(R)[p,q].
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In Figure 2, a 2-colouring of the graph TUC,Cg(S)[p,q] is presented and so
(TUC,C(S)) = 0.
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Fig. 2. The 2-dimensional Lattice of TUC,Csg(S)[p,q]-

We now consider the HCsC,[r,t] nanotube constructed from t copies of the graph L
depicted in Figure 3. Obviously r is even. We first consider the case that 1/2 is even. In Figure 3, a
2-dimensional representation of this graph is depicted. In this case, the odd length cycles have
exactly 5 and 7 edges. Therefore, we must deleted at least one edge from each pentagon and
heptagon. To compute ¢(HCsC,[r,t]), we must delete the common edges between all pentagon —
pentagon and heptagon — heptagon of the molecular graph of HCsC,[r,t] nanotube. From Figure 4,
one can see that there are rt edges between pentagon-pentagon and tr/2 + (t-1)r/2 edges between
heptagon — heptagon of the graph. Therefore, (HCsC/[r,t]) = 2rt — /2.
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Fig. 3. The Graph L.

Fig. 4. The 2-Dimensional Lattice of HCsC;[r,t] when r/2 is even.
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We now assume that 1/2 is odd. In this case there are other odd cycles of length 5r/2. To
delete these cycles, we must change our algorithm. In Figure 5, our deletion algorithm is
depicted. By this figure, one can prove @(HCsC,[r,t]) = 2rt — /2 + 1.

Fig. 5. The 2-Dimensional Lattice of HCsC,[r,t] when r/2 is Odd .

Considet the molecular graph of VCsC;[r,t] nanotube. The only odd cycles of this graph are
pentagons and heptagons. Using a similar method as in HCsC[r,t], we delete edges between
adjacent pentagons and adjacent heptagons to construct a bipartite graph. From Figure 6, one can
see that (VCsCy[r,t]) = rt + rt = 2rt.

Fig. 6. The 2-dimensional Lattice of VCsC[r,t].

Finally, we consider the molecular graph of SCsC[r,t] and HACsC/[r,t]. These molecular
graphs have exactly three types of odd cycles containing pentagons, heptagons and cycles of a
lengths j. It is possible to choose edges e;'s for deletion such that e;'s are edges of pentagons and
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heptagons, see Figures 7,8. Therefore, o( SCsC/[r,t]) = o( HAC;sC[r,t]) = 2rt.
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Fig. 7. The 2-dimensional Lattice of SCsC[r,t].
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Fig. 8.The 2-dimensional Lattice of HACsC-[r,t].
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