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The smallest number of edges that have to be deleted from a molecular graph G to obtain a 
bipartite spanning subgraph is called the bipartite edge frustration of G, denoted by φ(G). 
In this paper this number is computed for some important classes of nanotubes. 
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1. Introduction 
 
Let G = (V,E) be a simple graph, a graph without multiple edges and loops. A subgraph S 

of G is a graph whose set of vertices and set of edges are all subsets of G. A spanning subgraph is 
a subgraph that contains all the vertices of the original graph. The graph G is called bipartite if the 
vertex set V can be partitioned into two disjoint subsets V1 and V2 such that all edges of G have 
one endpoint in V1 and the other in V2. Bipartite edge frustration of a graph G, denoted by φ(G), is 
the minimum number of edges that need to be deleted to obtain a bipartite spanning subgraph.  

It is easy to see that φ(G) is a topological index and G is bipartite if and only if φ(G) = 0. 
Thus φ(G) is a measure of bipartivity. It is a well-known fact that a graph G is bipartite if and only 
if G does not have odd cycles. Holme, Liljeros and Edling introduced the edge frustration as a 
measure in the context of complex network, [8]. 

In [5,6] Fajtlowicz claimed that the chemical stability of fullerenes is related to the 
minimum number of vertices/edges that need to be deleted to make a fullerene graph bipartite. We 
mention here that before publishing the mentioned papers of Fajtlowicz, Schmalz et al. [10] 
observed that the isolated pentagon  fullerenes (IPR fullerenes) have the best stability. Doslic [1], 
presented some computational results to confirm this relationship. So it is natural to ask about 
relationship between the degree of non-bipartivity of nanotubes and their stability. 

Throughout this paper all graphs considered are finite and simple. Our notation is standard 
and taken mainly from [7,9]. We encourage the reader to consult papers by Doslic [1-4] for 
background material and more information on the problem. Our main results are the following two 
theorems: 

Theorem 1. Suppose E = TUC4C8(R)[p,q], Figure 1, and F = TUC4C8(S)[p,q], Figure 2, 
are C4C8 nanotubes in which p and q are the number of rhombs and squares in each row and 
column, respectively. Then φ(F) =0 and 
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Theorem 2. Suppose A = HC5C7[r,t], B = VC5C7[r,t], C = SC5C7[r,t] and D = HAC5C7[r,t] 

are C5C7 nanotubes, where 2r is the number of pentagons in each period and t is the number of  
periods, Figures 3-7. Then φ(B) = φ(C) = φ(D) = 2rt and we have: 
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 We encourage the reader to consult papers by Diudea and his co-author for some 
background material as well as basic computational methods on mathematical properties of 
nanomaterials, [11-13]. 
 

2. Results and discussion  
 
In this section the edge frustration number of five infinite class of nanotubes containing 

TUC4C8(R)[p,q], TUC4C8(S)[p,q], HC5C7[r,t], VC5C7[r,t], SC5C7[r,t] and HAC5C7[r,t] are 
computed. At first, we compute φ(TUC4C8(R)), Figure 1. If p is even then obviousely the 
molecular garph of TUC4C8(R)[p,q] is bipartite and so φ(TUC4C8(R)) = 0. Suppose p is odd. Then 
E has a cycle of length 3p and so it is not bipartite. We notice that the subgraph H constructed 
from G by deleting edges e1, ..., eq, Figure 1, is biparetite. This implies that  φ(TUC4C8(R)) ≤ q.  
On the other hand, it is clear that we cannot find less that q edges such that the graph constructed 
from G by deleting them, is bipartite. Thus φ(TUC4C8(R)) = q. 

 
 

 
 

Fig. 1. The 2-dimensional Lattice of TUC4C8(R)[p,q]. 
 
 
 

In Figure 2, a 2-colouring of the graph TUC4C8(S)[p,q] is presented and so               
φ(TUC4C8(S)) = 0.   
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Fig. 2. The 2-dimensional Lattice of TUC4C8(S)[p,q]. 
 
 

We now consider the HC5C7[r,t] nanotube constructed from t copies of the graph L 
depicted in Figure 3. Obviously r is even. We first consider the case that r/2 is even. In Figure 3, a 
2-dimensional representation of this graph is depicted. In this case, the odd length cycles have 
exactly 5 and 7 edges. Therefore, we must deleted at least one edge from each pentagon and 
heptagon. To compute ϕ(HC5C7[r,t]), we must delete the common edges between all pentagon – 
pentagon and heptagon – heptagon of the molecular graph of HC5C7[r,t] nanotube. From Figure 4, 
one can see that there are rt edges between pentagon-pentagon and tr/2 + (t-1)r/2 edges between  
heptagon – heptagon of the graph. Therefore, ϕ(HC5C7[r,t]) = 2rt – r/2. 

 

 
 

Fig. 3. The Graph L. 
 

 
Fig. 4. The 2-Dimensional Lattice of HC5C7[r,t] when r/2 is even. 
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We now assume that  r/2 is odd. In this case there are other odd cycles of length 5r/2. To 
delete these cycles, we must change our algorithm. In Figure 5, our deletion algorithm is 
depicted. By this figure, one can prove ϕ(HC5C7[r,t]) = 2rt – r/2 + 1.  

 
 

Fig. 5. The 2-Dimensional Lattice of HC5C7[r,t] when r/2 is Odd . 
  
Considet the molecular graph of VC5C7[r,t] nanotube. The only odd cycles of this graph are 

pentagons and heptagons. Using a similar method as in HC5C7[r,t], we delete edges between 
adjacent pentagons and adjacent heptagons to construct a bipartite graph. From Figure 6, one can 
see that ϕ(VC5C7[r,t]) = rt + rt = 2rt.  

 

 
 

Fig. 6. The 2-dimensional Lattice of VC5C7[r,t]. 
 
 

 Finally, we consider the molecular graph of SC5C7[r,t] and HAC5C7[r,t]. These molecular 
graphs have exactly three types of odd cycles containing pentagons, heptagons and cycles of a 
lengths j.  It is possible to choose edges ei's for deletion such that ei's are edges of pentagons and 
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heptagons, see Figures 7,8. Therefore, ϕ( SC5C7[r,t]) = ϕ( HAC5C7[r,t]) = 2rt. 
 

 
 

Fig. 7. The 2-dimensional Lattice of SC5C7[r,t].  
 

 
 

Fig. 8.The 2-dimensional Lattice of HAC5C7[r,t].  
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