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Extended bond-like orbitals are included in molecular-like orbitals, beside the localized 
atomic-l ike orbitals, and an effective hamiltoni-an governing the chemical bond is derived; 
the derivation is based upon the difference between the atomic-and bond-scale lengths.                             
The effective hamiltonian introduces the interaction between the electrons participating in 
chemical bond and their electronic “holes” in the atomic-like orbitals. A fractional  
occupancy is established for the bond-like orbitals, which is specific to the chemical bond.   

 
 
 1. Introduction 
 
 Atomic aggregates like molecules, atomic clusters or solids consist of atomic nuclei and 
electrons interacting through Coulomb forces (relativistic corrections may be left aside to a first 
approximation); a particular case is represented by the many-electron atoms. Wavefunctions 
methods have been developed both for the atomic and the chemical bond, based on the Hartree-Fock 
equations for single-electron states.[1] The chemical bond is usually described by superpo-sitions of 
atomic-like single-electron orbitals (or equivalent sets of basis wavefunctions), [2] though 
molecular-like orbitals have been pointed out from the early days of the chemical bond theories. [3] 
Density functionals methods [4] touch upon this point, especially in connection with the Thomas-
Fermi model.[5] An effective hamiltonian for the chemical bond is derived here, which provides a 
description of the atomic aggregates within the quasi-classical theory and the linearized Thomas-
Fermi model of a slightly inhomogeneous electron liquid.[6]-[7] 
 An ensemble of N atoms with atomic numbers Zi   and the nuclei placed at positions Ri ,              
i = 1,2,.. …N, is described by the hamiltonian 
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where  αr   and  αp  denote the position and, respectively, the momentum of the α-th electron, m is   
the electron mass and  – e  is the electron charge; equation (1) includes the kinetic energy of the 
electrons, the electron-nuclei Coulomb attraction, the electron-electron and the inter-nuclei Coulomb 

repulsions; for the sake of the simplicity the atomic units Bohr radius 
�

� A0.53== m2/a 2
H   for 

lengths and eV27.2=H
2 a/e  for energy will be used.      
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     2. Theory 
 
 Making use for molecular - like orbitals ( )rsψ  for single - electron states denoted by s, the 
Hartree - Fock energy functional reads 
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where one  may  identi fy  the  direct (Hartree)  interaction, expressed  with  the  electron density 
*
ss sψψ� and the exchange (Fock, Dirac) contribution, written in terms of the bi-local “electron  

density”  ( ) ( )� ′
s s

*
s rr ψψ . 

 The molecular-like orbitals sψ (spin included) consist of a superposition 

     sss
�

+= ϕψ                   (3) 

of localized atomic - like orbitals sϕ and extended orbitals s
�

 ; the latter may be called bond -like 

orbitals; such a superposition may ensure the completeness of the single - electron wave - functions; 
the two sets of orbitals may be taken as being orthogonal to each other (like the orbitals within each 
set, too). The atomic - like orbitals sϕ (or their linear combinations) are localized over atomic - 

scale lengths, while the bond-like orbitals  s
�

 extends over the size of the atomic aggregates. 
Because of this great disparity in the scale lengths of the two sets of orbitals most of the matrix 
elements in the energy functional (2) are small and, consequently, they may be neglected; this holds 
for the off-diagonal matrix elements of the kinetic energy and for the interaction terms where cross-
contributions like ss

�ϕ    both to the electron density and to its bi-local generalization may be 
neglected; in addition, cross-contributions to the exchange energy of the form 

( ) ( ) ( ) ( )rrrr ′′′ ′′ s
�� *

ss
*
s ϕϕ  are also small contributions which may be neglected (in this respect the 

bi-local “electron-density”  exhibits a wavefunction character rather than a true particle-density 
character). Under  these  circumstances  the  energy  functional splits into an atomic-like energy 
functional aE , a bond-like energy functional bE  , and an interaction contribution abE  originating in 

the density-density quadratic direct interaction in (3); indeed, in general, the variation of the particle 
density is smaller than the variation of the wavefunctions; therefore, one may write 

                                                 abba EEEE ++=                                                        (4) 
where 
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is the atomic-like energy functional (including the inter-nuclei Coulomb repulsion), 
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is the bond-like energy functional, and 
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′
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sab ddE ��ϕϕr-r/1rr                (7) 

is the interaction between the atomic –and bond- like orbitals. 
It is more convenient now to highlight the usual linear-combination coefficients and trough the 
substitutions sss ϕαϕ → and sss

�� β→ , which obey the normalization condition        

                                                                   12
s

2
s =+ βα                                                               (8) 

(the complex nature of these coefficients is irrelevant), and use wavefunctions sϕ and s
�

which are 

normalized, 1d
2

s =� ϕr , 1d
2

s =�
�

r  the energy functionals above can then be written as 
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for the atomic-like part, 
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for the bond-like part, and 
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2
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for the mixed term (7) in the energy functional, where the following notations have been introduced: 
the kinetic energies 

                                       ( ) s
2*

s
a
s 2/dt ϕϕ pr�=  ,  ( ) s

2*
s

b
s 2/dt �� pr�=                          (12) 

of the single-electron states in both types of orbitals (atomic-like and, respectively, bond-like 
orbitals); the electron-nuclei energies 
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of similar single-electron states; the (symmetric) direct  
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and exchange 

( ) ( ) ( ) ( ) ( )rrrrrrrr s
*
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a
ss /1dde ′′′ ′′′−′=� ϕϕϕϕ*

s  

 
                                                                                                                                              (15) 

                                     ( ) ( ) ( ) ( ) ( )rrrrrrrr s
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interaction matrices; and finally the symmetric matrix 
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of the direct interaction between the atomic-like orbitals and the bond-like orbitals. 

One may substitute now 2
s

2
s 1 βα −=   as given by (8) into Ea  and Eab  above, and obtains 
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and 
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it is worth noting here the occurrence of an attraction between the bond-like electrons and the 

atomic-like electronic “holes” , as expressed by the quartic 2
s

2
s ′ββ - term in abE .The sβ - dependent 

part of the total energy abba EEEE ++= is now a general quadratic form (i.e. a quadratic form 

plus a linear form) in 2
sβ ; its minimum values are obtained for those 2

sβ - parameters that satisfy a 

system of linear equations of the form 
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the D-matrix is given by 
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are the Hartree-Fock single-electron energies of the atomic-like and, respectively, bond-like orbitals. 



 
 
 

61 

 3. Results 
 
 The solutions of equations (19) may give, in principle, the molecular-like bond of an atomic 
aggregate, i.e. the stability and the equilibrium of such an aggregate as described by the molecular-
like binding; the existence of solutions for equations (19) may be viewed as the core of the general 
solution to the chemical bond; at the same time, equations (19) may also be viewed as providing the 
criterion of chemical binding through molecular-like orbitals. The detailed analysis of equations (19) 
is a matter of specific investigation; however, their general structure lends itself to a qualitative 
discussion given below. 
 First, one may note that in view of the disparity between the atomic-and bond-scale lengths 

the mixed-direct interaction ab
ssd ′  between the two types of orbitals is small in comparison with the 

other contributions to ssD ′ in (21); secondly, the exchange energies are usually smaller than the 
direct energies, as a consequence of their delocalization character; therefore, one may assume that, 
very likely, ssD ′  is a positive definite matrix. It follows  that  As in (19)  must have positive values in 

order to have a solution for 2
sβ  ( 10 2

s << β ). However, for inner atomic states the Hartree-Fock 

energies have large negative values (due mainly to the large electron-nucleus attraction a
sn ), so  that 

the corresponding  As quantities acquire negative values in this case, and equations (19) have no 

solutions ( 02
s =β ); the inner atomic shells do not provide (spontaneously) electrons for participating 

in the chemical bond, as expected. The discussion will therefore be restricted for the moment to the 
upper atomic shells. For the ideal case of atoms separated at infinite, i.e.for independent atoms, the 
highest Hartree-Fock energy of the atomic-like orbitals, i.e. the chemical potential of the electrons in 
atoms, has negative values, while all the quantities in (20) related to the bond-like orbitals vanish; it 
follows that equations (19) have no solution in this case either, as expected; indeed, rigorously 
isolated atoms are stable, they could not tend to bind together. Getting the atoms closer to one 
another the atomic-like orbitals sϕ become super-positions of single-atom orbitals aχ  localized ar 

iR , 

                                                             ( ) ( )Rrr −=� a
ia

s
ias c χϕ                                                  (23) 

so that the matrix elements given in (12) - (16) acquire a dependence on the inter-nuclei distances; 
[8] in addition, the Hartree-Fock energy levels of the upper electronic shells in the individual atoms 

split now in energy bands, while the chemical potential ( )HFb
sε  of the bond-like electrons in (20) 

acquires lower values; under such circumstances some of the As quantities, corresponding to the 
upper levels, may acquire positive values, and the corresponding atomic-like orbitals tend to 
participate with electrons in the chemical bond; in this case equations (19) may have a few non-

vanishing solutions for small values of the parameters 2
sβ  , and the chemical bond may appear 

thereby, as described by the bond-like part of the energy functional  abba EEEE ++=  given by 
(10), (17) and (18). 
 It is convenient to write the total energy functional as  E = E1 +E2  where 1E  includes the 

entire Eb without the electron-nuclei attraction (which is included in 2E ), plus all the quartic  2
s

2
s ′ββ    

-terms in aE and abE ; the remaining terms are included in 2E ;  in other words, all the quartic 
2
s

2
s ′ββ -contributions to the total energy functional are included in 1E  plus the kinetic energy of the 

bond-like electrons; while all the remaining contributions are relegated to 2E  . One obtains 
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making use of (19) - (22) the energy E2 can also be written as 
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it is worth noting that E2 contains a purely atomic-like energy, plus the last contribution to (26) 

which may also be written as  2
s

2
sss ss

b
ss

2
s Dt ′′ ′�� −− βββ ;  it is also worth emphasizing that the 

attraction between the bond-like electrons and the bare nuclei (the b
sn -term) does not appear in the 

equilibrium expressions of the energy functionals 2,1E , as a consequence of the minimization of 

the 2
sβ - quadratic form, expressed by equations (19). In addition, one may also note that the presence 

of the kinetic energy of the bond-like electrons ( b
st ) both in the last term in 2E and in the bond-like 

energy functional 1E  is related to the molecular-like extension (3) of the electron dynamics, such as 

to include the contribution of the extended bond-like orbitals s� . 
 It is easy now to identi fy the effective hamiltonian corresponding to the bond-like energy 

functional given by (24); first, one may note in (24) the fractional occupancy factor 2
sβ of the bond-

like orbitals s� , which, according to the discussion above, is non-vanishing ( 02
s ≠β ) only for a 

limited number of upper energy levels, corresponding to atomic-like orbitals a in the upper atomic 
shells; it is convenient to introduce the density 
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2
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of electronic “holes”  in the ionic cores, i.e. the density of positive charge in the upper atomic shells, 
and note that the energy functional E1 includes the kinetic energy of the bond-like electrons (first 
term in (24), the attraction between the bond-like electrons and the positively-charged ionic cores 
(the second term in (24), the Coulomb repulsion between the bond-like electrons (the third term and 
the fourth term (24), and finally, the Coulomb repulsion between the ionic cores (last term in (24); a 
bi-local atomic-like density similar with (27) may formally be used here for the exchange inter-ionic 
energy); therefore, according to (24), the effective hamiltonian of the bond-like electrons reads 
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Making use of (23) the ionic charge density may be written as 
 

                                                                      
2

ias
ia

s
ia

2
s c�= χβρ                                        (29) 

 
where  iaχ   is the atomic orbital ( )Rr −iaχ centered on iR , and the contribution of the mixed 

terms has been neglected; introducing the notation 
2

s
s
ia

2
sia c�= βα  one may also write 

     2
ia

ia
ia χαρ �=                            (30) 

which gives an effective charge  

                                                                    �=
a

iaiz α                                                       (31) 

for every atom; for a point-like charge distribution of the ionic cores ( ) ( )� −= i
*
iz Rrr δρ  the 

effective hamiltonian (28) becomes 
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which has been employed in Refs.6 and 7 for the metall ic bond. 
The mixed terms may be preserved, in general, in the ionic charge density (27), in contrast to the 
simplified expression (29); in that case, the ionic cores density of positive charge reads 
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jb;ia

jb
*
iajb;ia χχαρ                                                       (33) 

where 
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2
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hence, the charge of electronic “holes” on each atomic orbital is 
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s

2s
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2
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*
ia cz βα                                               (35) 

 
according to the orthogonality of the atomic-like orbitals iaχ   ; these charges are not point-like 
charges in general, but their pair-l ike distribution is given by (33). The bond-like hamiltonian (28) 
leads to a quasi-classical description of a slightly inhomogeneous electron liquid, where atomic-like 
contribution is usually neglected and the bond-like orbitals s�   , are (quasi- ) plane waves in the 
first approximation; under these circumstances the minimum value of the energy is realized by an 

unrestricted occupancy of these orbitals ( 12
s =β  in the quasi-classical conterpart of the energy 

functional E1), while the conservation of the total charge is ensured by the Coulomb interactions in 
(28); indeed, the total charge of the ionic cores described by the density  given by (27)  is equal to 
the total charge of the bond-like electrons, as expected. Such a treatment is appropriate for the 
cohesion, the equilibrium structure and the binding energy of the atomic aggregate, as described 
within the quasi-classical theory and the linearized Thomas-Fermi model; however, the occupancy 
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factor must be explicitly employed for the single-electron properties, as, for instance, in computing 
the ionization potential, or the plasmon frequency of such atomic aggregates; one may say that bond-

like electrons are “strongly renormalized” (fractional occupancy 2
sβ ) by their interaction with the 

ionic cores.[6],[7] 
 The atomic fractional occupancy can be made explicit by recasting the energy functional E2 
given by (25) or (26) as 
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up to higher-order  contributions in 2
sβ  , the last term in (36) is the second-order change 

�− s ss nδδµ in the energy, where ( ) b
s

a
ss tHF −≅ εµδ  is the change in the chemical potential and 

2
ssn βδ −=  is the variation of the occupation number; one may also note that the energy of the 

bond-like electrons as obtained from the quasi-classical treatment of the hamiltonian Hb, is of 

higher-order in 2
sβ , so that both the last term in (26) and the last term in (36) bring quartic 

contributions in 2
sβ at least. 

 
 
 4. Discussion 
 

 In principle, the coefficients s
iac  may be determined from the purely atomic - like problem 

described by the energy functional 2E given by (26), according to the standard practice of the ab -
initio wavefunctions methods;[2] these methods provide also the atomic-type ingredients for the 
quantities entering the basic system of equations (19); the remaining bond-like matrix elements in 
(19) are given by the quasi-classical description of the bond-like electrons moving in the sel f-
consistent potential determined by the charge distribution ρ  given by (27).[6],[7]. In the next step, 

one solves the system of equations (19) for the parameters 2
sβ and looks for a self-consistent 

solution for the charge density  ρ  (and implicitly for the parameters 2
sβ ). It is worth noting here that 

the self-consistency of this computation scheme must also satisfy the equilibrium of the atomic 
aggregate, i.e. it must be realized for the minimum value of the total energy functional E with 
respect to the positions of the atomic nuclei. According to this prescription the entire problem of the 
chemical bond as formulated here may, in principle, be solved completely. It is worth adding in this 
context that the quasi-classical description and the linearized Thomas-Fermi theory for the slightly 
inhomogeneous electron liquid formed by the bond-like electrons, as described by the effective 
hamiltonian Hb given by (28), lead to bound states for the atomic aggregates.[6],[7] In this scheme of 
computation the atomic-like part in the energy functional E2 given by (26) may acquire higher values 

than its equilibrium value corresponding to the absence of the bond-like electrons ( 02
s =β ) , as a 

consequence of the inter-nuclei  Coulomb repulsion; the excess is, in fact, related to the condition for 
non-trivial solutions of equations (19), and to the existence of equilibrium, non - vanishing - values, 
and, thus, to the bond-like electron dynamics; in this connection, one may also note that the last term 
in (26) lowers the energy E2, in contrast to the excess of its purely atomic-like part; borth the excess 
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of the purely atomic-like contribution to E2 and the last ( 2
sβ  -dependent) term in E2 acquire small 

values (due to the presence of the 2
sβ -factors) in comparison with the purely atomic-like contri- 

bution corresponding to 02
s =β ; the total change in E2 for 02

s ≠β  is toward small negative values 
in comparison with the energy of the independent atoms, so that the binding energy of the atomic 
aggregate is given both by this small change in the purely atomic-like energy of the ensemble and by 
the energy of the bond-like electrons described by the hamiltonian Hb. However, to the first 
approximation, both the change in the atomic-like energy E2 and the departure from unity of the 

fractional occupancy 12
s <β   in the bond-like energy functional E1 are quantum corrections within 

the scheme of the quasi-classical description; therefore, the binding energy of the atomic aggregate, 
and the chemical bond, are given, to the first approximation, solely by the hamiltonian Hb with a 

(formal) occupancy 12
s =β . 

 
 
 5. Conclusions 
 
 According to the above discussion, the chemical bond is realized by electrons in the upper 
atomic shells contributing to the bond-like orbitals and generating the effective hamiltonian Hb given 
by (28); the latter, by an appropriate treatment, [6],[7] ensures the equilibrium and the stability of the 
atomic aggregate for certain values of the inter-nuclei distances. However, pushing the atoms closer 
to one another, the upper atomic shells may start to lose their identity as atomic-like orbitals, expand 
the width of the bands they form, while the inner shells start to be affected and develop their own 
energy bands; very likely, during such a process, the total electronic energy changes little, but the 
Coulomb repulsion between the nuclei (not included in the electronic part of the energy) increases, 
and opposes itsel f the atoms getting closer. However, passing over such a “potential barrier”, and 
pushing the atoms close enough to one another by an external  force, the energy bands formed by the 
inner atomic shells may contribute themselves to the bond-like orbitals, and there will be more 
solutions to equations (19), corresponding to more s-states participating in the chemical bond; the 
inner atomic shells may therefore contribute non-spontaneously to the chemical bond, through such 
an external force pushing the atoms closer and closer to one another; increasing the number of 
solutions to equations (19) results, however, in lowering the total energy, as a consequence of the 
action of the bond-like hamiltonian Hb (this action may simply be viewed as ann increase in the 

effective charges *
iz ); then, one may expect another region of stability for the atomic aggregate, 

where the atoms are packed closer; going further on, a whole sequence of (meta -) stabil ity regions 
can be obtained for atomic aggregates, characterized by tighter bonds and a closer packing, 
separated by high energy barriers; such regions (“islands”  of meta-stability) are related to the inner 
atomic shells. 
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