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EFFECTIVE HAMILTONIAN FOR THE MOLECULAR BINDING
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Extended bond-like orbitals are included in molecular-like orbitals, beside the localized
atomic-like orbitals, and an effective hamiltoni-an governing the chemica bond is derived;
the derivation is based upon the difference between the atomic-and bond-scale lengths.
The effective hamiltonian introduces the interaction between the electrons participating in
chemical bond and their electronic “holes’ in the atomic-like orbitals. A fractiond
occupancy is established for the bond-like orbital's, which is specific to the chemicd bond.

1. Introduction

Atomic aggregates like molecules, aomic clusters or solids consist of atomic nuclei and
eectrons interacting through Coulomb forces (relativistic corrections may be left aside to a first
approximation); a particular case is represented by the many-electron atoms. Wavefunctions
methods have been devel oped both for the atomic and the chemica bond, based on the Hartree-Fock
equations for single-dectron states.[1] The chemical bond is usually described by superpo-sitions of
atomic-like single-dectron orbitals (or equivaent sets of basis wavefunctions), [2] though
mol ecular-like orbitals have been pointed out from the early days of the chemica bond theories. [3]
Density functionals methods [4] touch upon this point, especially in connection with the Thomas-
Fermi modd.[5] An effective hamiltonian for the chemica bond is derived here, which provides a
description of the atomic aggregates within the quasi-classical theory and the linearized Thomas-
Fermi modd of a dlightly inhomogeneous € ectron liquid.[6]-[7]

An ensemble of N atoms with atomic numbers Z; and the nucleé placed at positions R;
i =1,2,.....N, is described by the hamiltonian

2

e
H ZDa/Zm Z‘R —ra‘ [;ﬁm+ .
e ZZ

z|R RJ|

17 ]
where r, and p, denote the position and, respectively, the momentum of the a-th electron, mis

the dectron mass and — e is the dectron charge equation (1) includes the kinetic energy of the
dectrons, the d ectron-nucle Coulomb attraction, the € ectron-€electron and the inter-nud & Coul omb

repulsions; for the sake of the simplicity the atomic units Bohr radius ay = h%12m=0.53A for
lengths and €? / a; = 27.2eV for energy will be used.
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2. Theory

Making use for molecular - like orbitals ¢(r) for single - electron states denoted by s, the
Hartree - Fock energy functional reads
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where one may identify the direct (Hartree) interaction, expressed with the dectron density
stsw*s and the exchange (Fock, Dirac) contribution, written in terms of the bi-loca “dectron

density” Y ws(r)ws(r) .
The molecular-like orbitals (/4 (spin included) consist of a superposition
Ys = ¢s+ 0y 3)

of locadized atomic - like orbitds ¢4 and extended orbitals® ; the latter may be called bond -like
orbitals; such a superposition may ensure the compl eteness of the single - ectron wave - functions;
the two sets of orbitals may be taken as being orthogond to each other (like the orbitas within each
set, too). The atomic - like orbitas ¢4 (or their linear combinations) are localized over atomic -
scale lengths, while the bond-like orbitals @4 extends over the size of the atomic aggregates.
Because of this great disparity in the scale lengths of the two sets of orbitals most of the matrix
dements in the energy functiona (2) are small and, consequently, they may be neglected; this holds
for the off-diagonal matrix € ements of the kinetic energy and for the interaction terms where cross-
contributions like ¢, both to the eectron density and to its bi-local generalization may be
neglected; in addition, cross-contributions to the exchange energy of the form
do(r)os(r) @y (r)@g (r') areaso small contributions which may be neglected (in this respect the
bi-local “electron-density” exhibits a wavefunction character rather than a true particle-density
character). Under these cdrcumstances the energy functiona splits into an atomic-like energy
functional E,, abond-like energy functional E;, , and an interaction contribution E originating in
the density-density quadratic direct interaction in (3); indeed, in genera, the variaion of the particle
density is smaller than the variation of the wavefunctions; therefore, one may write

E=Ea+Ep+Eq (4)
where
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is the atomic-like energy functional (including theinter-nuclei Coulomb repulsion),
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is the bond-like energy functional, and
Eab:Idr dr(u/]r-r')> geps D @edg O @)
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is the interaction between the atomic —and bond- like orbitds.
It is more convenient now to highlight the usual linear-combination coefficients and trough the
substitutions ¢4 - agpsand @4 — GP 4, which obey the normalization condition

as + 5 =1 ®
(the complex nature of these coefficients is irrelevant), and use wavefunctionsg@g and @ s which are

2 2
normalized,jd r|gs| = 1,Id r|@s| =1 theenergy functionals ebove can then be written as

— 2.a 2.a,1 2 2,48
Ea—Z:chtS —Z:crsnS +EZaSaS,dSS, -
s s s

L ) 1 ©)
—EZasas,egs, +EZZIZJ /| Ri _Rj |
s i%]
for the atomic-like part,
_ 2.b 2 b 1 2 2 b
Ep —Zﬁsts _Zﬁsns "'EZﬁsﬁs'dss' -
1s s ss (10)
LY s
por
for the bond-like part, and
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for the mixed term (7) in the energy functional, where the foll owing notations have been introduced:
the kinetic energies

tg‘:jdr¢’;(p2/2)¢s, tf :jolrcp’;(p2/2)<1>S (12)

of the single-dectron states in both types of orbitals (atomic-like and, respectively, bond-like
orbitals); the dectron-nucle energies

ng‘:jerzi I|R-1|deds . ng’:joerzi I|R-1 |00 (13)
of similar single-el ectron states; the(lsymmetric) direct |
dd, :jdrdr'(1/|r 1’| )pspsbeds
(14)
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and exchange
e =[drar (1/]r-r'|)oc()slr) ¢ ()os )

(15
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interaction matrices; and finally the symmetric matrix

a2 =[drdr(u/|r-r| (fep 000 + 4 pe0 0, ) (16)
of the direct interacti on between the atomic-like orbital s and the bond-like orbitds.
One may substitute now ag =1- ,83 asgiven by (8) into E, and E, above, and obtains
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it is worth noting here the occurrence of an attraction between the bond-like dectrons and the
atomic-like dectronic “holes’, as expressed by the quartic ,6’5,6’5 -termin Egp, .The S - dependent
part of the total energy E =E, + E, + E,,is now a generd quadratic form (i.e. a quadratic form

plus alinear form) in ,85 ; its minimum val ues are obtained for those ,8§ - parameters that satisfy a
system of linear equations of the form

- A+ Dgfig =0 (19)
S

where

:[tg—n§+2d§§—2e§§ J—(tg‘—n?)—%ng’:
s s

s (20)
:5§(HF)—£2(HF)+Z[d§S, - e, _%d;'j
"
the D-matrix is given by
De =(d2 —e2,)+(db, ~eb,J-g® (21)
and
2P(HF)=t&P —ndP +> d3° - > el (22)

S S
are the Hartree-Fock single-e ectron energies of the atomi c-like and, respectivedy, bond-like orbitals.
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3. Results

The solutions of equations (19) may give, in principle, the molecular-like bond of an atomic
aggregate, i.e. the stability and the equilibrium of such an aggregate as described by the molecular-
like binding; the existence of solutions for equations (19) may be viewed as the core of the general
solution to the chemical bond; at the same time, equations (19) may also be viewed as providing the
criterion of chemical binding through mol ecular-like orbitals. The detailed anad ysis of equations (19)
is a matter of specific investigation; however, their generd structure lends itsdf to a quditative
discussion given be ow.

First, one may note that in view of the disparity between the atomic-and bond-scd e lengths

the mixed-direct interaction d;b between the two types of orbitals is small in comparison with the
other contributions toDgy in (21); secondly, the exchange energies are usualy smaller than the
direct energies, as a consequence of their delocalization character; therefore, one may assume that,
very likdy, Dy is apositive definite matrix. It follows that Asin (19) must have positive valuesin
order to have a solution for ,83 (0< ,83 < 1). However, for inner atomic states the Hartree-Fock
energies have large negative va ues (due mainly to the large e ectron-nudleus attraction n2), so that
the corresponding As quantities acquire negative vaues in this case, and equations (19) have no

solutions ( ,33 =0); theinner atomic shells do not provide (spontaneously) €ectrons for particpating

in the chemical bond, as expected. The discussion will therefore be restricted for the moment to the
upper atomic shells. For the idea case of atoms separated at infinite, i.e.for indegpendent atoms, the
highest Hartree-Fock energy of the atomic-like orbitals, i.e. the chemica potentia of the dectronsin
atoms, has negative values, while al the quantitiesin (20) related to the bond-like orbitals vanish; it
follows that equations (19) have no solution in this case either, as expected; indeed, rigorously
isolated atoms are stable, they could not tend to bind together. Getting the atoms closer to one
another the atomic-like orbitals ¢4 become super-positions of single-atom orbitals x, locaized ar

Ri,
#s(r)= cxalr -R) (23)
ia

so that the matrix e ements given in (12) - (16) acquire a dependence on the inter-nuclei distances,
[8] in addition, the Hartree-Fock energy leves of the upper eectronic shellsin the individua atoms

split now in energy bands, while the chemica potential £2(HF) of the bond-like electrons in (20)

acquires lower values, under such circumstances some of the As quantities, corresponding to the
upper levels, may acquire positive values, and the corresponding atomic-like orbitds tend to
participate with eectrons in the chemical bond; in this case equations (19) may have a few non-

vanishing solutions for smal values of the parameters ,33 , and the chemica bond may appear
thereby, as described by the bond-like part of the energy functiona E =E, + E, + E5, given by
(10), (17) and (18).

It is convenient to write the total energy functional as E = E; +E, where E; includes the

entire E, without the d ectron-nucle attraction (whichisincluded in E,), plus dl the quartic /33/35
-terms inEzjand Egy; the remaining terms are included in E,; in other words, all the quartic
/33/35 -contributions to the total energy functiona are induded in E; plus the kinetic energy of the
bond-like e ectrons; while al the remaining contributions are relegated to E, . One obtains
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it is worth noting that E, contains a purely atomic-like energy, plus the last contribution to (26)
which may aso be written as - Zsﬁgtg D D§,ﬁ§ﬁ§; it is also worth emphasizing that the

attraction between the bond-like dectrons and the bare nucle (theng -term) does not appear in the
equilibrium expressions of the energy functionalsk; » , as a consequence of the minimization of

the ,8§ - quadratic form, expressed by equations (19). In addition, one may aso note that the presence

of the kinetic energy of the bond-like dectrons (tg) both in thelast term in E, and in the bond-like
energy functional E; isrelated to the molecular-like extension (3) of the é ectron dynamics, such as
to include the contribution of the extended bond-like orbitals® .

It is easy now to identify the effective hamiltonian corresponding to the bond-like energy

functional given by (24); first, one may notein (24) the fractional occupancy factor ,83 of the bond-

like orbitals®, which, according to the discussion above, is non-vanishing ( ,83 #0) only for a

limited number of upper energy levels, corresponding to atomic-like orbitals a in the upper atomic
shdls; it is convenient to introduce the density

p=)_ Bipsps (27)

S

of dectronic “holes’ intheionic cores, i.e. the density of positive charge in the upper atomic shells,
and note that the energy functional E; indudes the kinetic energy of the bond-like dectrons (first
term in (24), the attraction between the bond-like e ectrons and the positivey-charged ionic cores
(the second term in (24), the Coulomb repulsion between the bond-like dectrons (the third term and
the fourth term (24), and finally, the Coulomb repulsion between theionic cores (last termin (24); a
bi-local atomic-like density similar with (27) may formally be used here for the exchange inter-ionic
energy); therefore, according to (24), the effective hamiltonian of the bond-like d ectrons reads

Hy, = ZpaIZm ZJerL+ P — !

el 2 el (29)

Y
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Making use of (23) theionic charge density may be written as
G
pZZﬁs‘CiaXia‘ (29)
ias

where xj, is the atomic orbital yj,(r - R)centered on R;, and the contribution of the mixed
terms has been neglected; introducing the notation aj, = ,83‘0%‘2 one may also write

p:zaia|)(ia|2 (30)
which gives an effective charge :

=) Oia (31)
a

for every atom; for a point-like charge distribution of the ionic cores pr) =Y. z d(r -R) the
effective hamiltonian (28) becomes

Hp= Zpa/Zm Z|R z;

+
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(32)

which has been employed in Refs.6 and 7 for the metallic bond.
The mixed terms may be preserved, in general, in the ionic charge density (27), in contrast to the
simplified expression (29); in that case, theionic cores density of positive charge reads

p= zaia;jbXTanb (33
ia;jb
where
Oia;jb = Zﬁzcg Jsb (34)

hence, the charge of dectronic “holes’ on each atomic orbital is
_ _ 2|.s |2
Zia = Gia:jb —Zﬁs‘cia‘ (35)
S

according to the orthogonality of the atomic-like orbitas y;, : these charges are not point-like
charges in generd, but their pair-like distribution is given by (33). The bond-like hamiltonian (28)
leads to a quasi-classica description of a dlightly inhomogeneous dectron liquid, where atomic-like
contribution is usually neglected and the bond-like orbitals @4 , are (quasi- ) plane waves in the
first approximation; under these circumstances the minimum value of the energy is realized by an

unrestricted occupancy of these orbitals ( ,83 =1 in the quasi-classical conterpart of the energy
functiona E;), while the conservation of the totd charge is ensured by the Coulomb interactionsin
(28); indeed, the total charge of the ionic cores described by the density given by (27) is equal to
the total charge of the bond-like dectrons, as expected. Such a treatment is appropriate for the
cohesion, the equilibrium structure and the binding energy of the atomic aggregate, as described
within the quasi-classicd theory and the linearized Thomas-Fermi modd; however, the occupancy
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factor must be explicitly employed for the singl e-electron properties, as, for instance, in computing
the ionization potential, or the plasmon frequency of such atomi ¢ aggregates; one may say that bond-
like eectrons are “strongly renormalized” (fractional occupancy ,33) by ther interaction with the
ionic cores.[6],[7]

The atomic fractional occupancy can be made explicit by recasting the energy functiona E;
given by (25) or (26) as

Efzﬁ@mﬂ z%%( & Jr
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up to higher-order contributions in ,83 , the last term in (36) is the second-order change
- dusdhs in the energy, where dus D3 (HF)-tg is the change in the chemical potential and

ong :—,Bg is the variation of the occupation number; one may aso note that the energy of the
bond-like dectrons as obtained from the quasi-classical treatment of the hamiltonian H,, is of

higher-order in ,Bg, so that both the last term in (26) and the last term in (36) bring quartic
contributionsin /32 at leest.

4. Discussion

In principle, the coefficients ¢} may be determined from the purdy atomic - like problem
described by the energy functiona E, given by (26), according to the standard practice of the ab -
initio wavefunctions methods;[2] these methods provide aso the atomic-type ingredients for the
quantities entering the basic system of equations (19); the remaining bond-like matrix e ementsin
(19) are given by the quasi-classical description of the bond-like dectrons moving in the sdf-
consistent potentia determined by the charge distribution o given by (27).[6],[7]. In the next step,

one solves the system of eguations (19) for the parameters ,8§ and looks for a sdf-consistent

solution for the charge density p (and implicitly for the parameters ,33 ). It isworth noting here that
the sdf-consistency of this computation scheme must also satisfy the equilibrium of the atomic
aggregate, i.e. it must be redlized for the minimum vaue of the total energy functional E with
respect to the positions of the atomic nude. According to this prescription the entire problem of the
chemical bond as formulated here may, in principle, be solved completdy. It is worth adding in this
context that the quasi-classical description and the linearized Thomas-Fermi theory for the slightly
inhomogeneous dectron liquid formed by the bond-like eectrons, as described by the effective
hamiltonian Hy, given by (28), lead to bound states for the atomic aggregates.[6],[ 7] In this scheme of
computation the atomic-like part in the energy functional E;, given by (26) may acquire higher vaues
than its equilibrium vaue corresponding to the absence of the bond-like dectrons ( ,33 =0),asa
consequence of theinter-nude Coulomb repulsion; the excessis, in fact, rd ated to the condition for
non-trivia solutions of equations (19), and to the existence of equilibrium, non - vanishing - values,
and, thus, to the bond-like d ectron dynamics; in this connection, one may also notethat the last term
in (26) lowers the energy E,, in contrast to the excess of its purely atomic-like part; borth the excess
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of the purdly atomic-like contribution to E; and the last ( ,33 -dependent) term in E; acquire smdll
va ues (due to the presence of the ,8§ -factors) in comparison with the purely atomi c-like contri-

bution corresponding to ,8§ =0; the total changein E; for ,8§ # 0 istoward smdl negative values
in comparison with the energy of the independent atoms, so that the binding energy of the atomic
aggregate is given both by this small changein the purely atomic-like energy of the ensemble and by
the energy of the bond-like dectrons described by the hamiltonian H,. However, to the first
approxi mation, both the change in the atomic-like energy E, and the departure from unity of the

fractional occupancy ,33 <1 inthe bond-like energy functional E; are quantum corrections within

the scheme of the quasi-classical description; therefore, the binding energy of the atomic aggregate,
and the chemica bond, are given, to the first approximation, soldy by the hamiltonian H, with a

(formal) occupancy ,83 =1.

5. Conclusions

According to the above discussion, the chemical bond is realized by dectrons in the upper
atomic shells contributing to the bond-like orbitals and generating the effective hamiltonian Hy, given
by (28); the latter, by an gppropriate treatment, [6],[7] ensures the equilibrium and the stability of the
atomic aggregate for certain val ues of the inter-nucle distances. However, pushing the atoms closer
to one another, the upper atomic shells may start to lose their identity as atomic-like orbitas, expand
the width of the bands they form, while the inner shells start to be affected and develop their own
energy bands; very likdy, during such a process, the total dectronic energy changes little, but the
Coulomb repulsion between the nucle (not included in the eectronic part of the energy) increases,
and opposes itsdf the atoms getting closer. However, passing over such a “potentia barrier”, and
pushing the atoms close enough to one ancther by an externa force, the energy bands formed by the
inner atomic shells may contribute themselves to the bond-like orbitals, and there will be more
solutions to equations (19), corresponding to more s-states participating in the chemica bond; the
inner atomic shells may therefore contribute non-spontaneously to the chemical bond, through such
an externa force pushing the atoms closer and closer to one another; increasing the number of
solutions to equations (19) results, however, in lowering the total energy, as a consequence of the
action of the bond-like hamiltonian H, (this action may simply be viewed as ann increase in the

effective charges zf ); then, one may expect another region of stability for the atomic aggregate,
where the atoms are packed closer; going further on, a whole sequence of (meta -) stability regions
can be obtained for atomic aggregates, characterized by tighter bonds and a closer packing,
separated by high energy barriers; such regions (“islands’ of meta-stability) are related to the inner
atomic shells.
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