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In pursuit of better adenosine A; receptor antagonist agents, QSAR studies were
performed on a series of disubstituted N°-cyclopentyladenine analogues. Stepwise multiple
linear regression analysis was performed to derive QSAR models which were further
evaluated for statistical significance and predictive power by internal and external
validation. The best QSAR model was selected, having correlation coefficient (r) = 0.879,
standard error of estimation (SEE) = 0.368 and cross validated squared correlation
coefficient (q%) = 0.664. The predictive ability of the selected model was also confirmed
by leave one out cross validation. The QSAR model indicates that the dielectric energy,
connectivity index 1, dipole vector Y, dipole vector Z, and HOMO energy play an
important role for the Al receptor antagonist activities. The results of the present study
may be useful on the designing of more potent disubstituted N°-cyclopentyladenine
analogues as adenosine A; receptor antagonist agents.
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1. Introduction

Denosine is a neuromotor which produces many important biological functions by
activation of G protein coupled receptors that are classified in to A; , A;B, and A; subtypes.
Adenosine receptors from different species shows 87-93% amino acid sequence homology ,the
only exception being the A; subtypes which exhibit 74% primary sequence homology between rat
and human [1-3] adenosine receptor are involved in many peripheral and central regulatory
mechanism including vasodilation [4], vasoconstriction in the kidney [5], inhibition of lypolysis
and insulin release [6] and moderation of cerebral ischemi [7].

The first A, receptor antagonists were xantine derivatives , such as theophylline ,since
then a variety of different classes of heterocyclic compounds has described to possess antagonist
activity at adenosine receptor, xantine, adenines, 7-deazaadenine,7-deaza-8-ajapurine, pyrazolo (3-
4-c)quinolines, pyrazolo-(1-5-a) pyridine and 1-8-naphthyridine. E.W Van Tilburg synthesized a
series of 4-methyl-(2-phenyl-carboxamido-)-1,3-thiazole derivatives as potential antagonist for the
adenosine A, receptors [8-14].
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Rianne et al. [15] expressed Ny and C-8 position for increase adenosine A; receptor
affinity, small substituents at the 2-position of adenines or adenosines only have limited effects on
adenosine A, receptor affinity.

Linden and co-workers [16] investigated C-8 position of adenines to some extent. They
synthesized 8-substituted N°-norbornyl-9-methyladenines and found that N-containig group at this
position enhances A; receptor affinity while introduction of alkyl chain on the C-8 position of
adenines led to selective adenosine Aj receptor antagonist [17].

Computational chemistry has developed into an important contributor to rational drug
design. Quantitative structure activity relationship (QSAR) modeling results in a quantitative
correlation between chemical structure and biological activity. Senior author of the article Dr. R.
K. Agrawal and his research team has developed a few quantitative structure-activity relationship
models to predict biological activity of different group of compounds [18-26].

2. Results and discussion

A data set of 37 compounds of reported series'> for adenosine Al receptor antagonist
activity was used for the present QSAR study (Table 1). The QSAR studies of the N°-
cyclopentyladenine analogues series resulted in several QSAR equations. The two best equations
are:
pKi = 10.653 (+ 1.520) DE — 0.670 (£ 0.256) CI1 +0.00311 (£ 0.033) MR — 0.279 (x 0.106) DVZ
+0.450 (£ 0.102) DVY + 2.782 (£ 0.863) HE + 31.380 (% 8.420)....... @)
n=33,r=0.883, 1" =0.780, I’y = 0.729, ¢’ = 0.638, F = 15.35, SEE = 0.3695, Spress = 0.430, P <
0.001.
pKi=11.076 (£ 1.451) DE — 0.434 (+ 0.066) CI1 — 0.275 (£ 0.106) DVZ + 0.508 (£ 0.081) DVY
+3.224 (£ 0.727) HE +35.705 (£ 7.080). ... eveveiiieiiieeee, 2
n=33,1r=0.879, "= 0.772, r’yy = 0.730, ¢* = 0.644, F = 18.30, SEE = 0.3689, Spgess = 0.430, P <
0.001.

In the above equations n is the number of compounds used to derive the model and values
in parentheses are the 95% confidence limit of respective coefficient. We extended our study for
five-parametric correlations as they are permitted for a data set of 33 compounds in accordance
with the lower limit of rule of thumb. Correlation matrix of the parameters in best model is given
in table 3.

The calculated and predicted (LOO) activities of the compounds by the above models are
shown in table 4. Model-1 shows good correlation coefficient (r) of 0.883 between descriptors
(DE, CI1, MR, DVY, DVZ, and HE) and A, receptor antagonist activity. Squared correlation
coefficient (r*) of 0.780 explains 78.0% variance in biological activity.

This model also indicates statistical significance > 99.9% with F values F = 15.35. Cross
validated squared correlation coefficient of this model was 0.638, which shows the good internal
prediction power of this model. Model-2 shows good correlation coefficient (r) of 0.879 between
descriptors (DE, CIlI, HE, DVY, and DVZ) and A, receptor antagonist activity. Squared
correlation coefficient (r*) of 0.772 explains 77.2% variance in biological activity. This model also
indicates statistical significance > 99.9% with F values F = 18.30. Cross validated squared
correlation coefficient of this model was 0.644, which shows the good internal prediction power of
this model.

Consequently equation-2 can be considered as most suitable model with both high
statistical significant and excellent predictive ability.

The predictive ability of model-2 was also confirmed by external r’CVext. The robustness
of the selected model was checked by Y — randomization test. The low r* and q* values indicate
(data not shown) that the good results in our original model are not due to a chance correlation or
structural dependency of the training set. The predictive ability of this model was also confirmed
by external cross validation (equation 3). Consequently equation-2 can be considered as most
suitable model with both high statistical significant and excellent predictive ability.
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Table 1. Structures, biological activity of the N®-cyclopentyladenine analogues.
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Compd. Cc8 N9-R N3-R Ki (nm),A; receptor
1 Br H - 2646
2 Br Methyl - 43
3c Br Methyl - 467
4 Br Allyl - 35
5 Br Propyl - 33
6 Br Benzyl - 1220
7 H Benzyl - 1810
8 Br - Methyl 2760
9 Br - Propyl 995
10 Br - Benzyl 870
11 OCH; Allyl - 208
12 OCH;3; Propyl - 270
13 OCH; Methyl - 120
14 OC,Hs Methyl - 106
15 OCH(CH3), Methyl - 40
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Table 2. Selected descriptors involved in developing QSAR models.
Comp. Cl1 DVY DVZz DE HE MR

1 7.83 7.831 -0.529 -0.61 -8.749 66.162
2 8.254 8.254 -0.406 -0.501 -8.693 71.059
3 5.698 5.698 0.127 -0.707 -8.585 49.153
4 9.292 9.292 -0.795 -0.489 -8.685 80.221
5 9.292 9.292 -0.7 -0.471 -8.685 80.331
6 11.31 11.31 0.021 -0.492 -8.689 95.671
7 10.899 10.899 -0.075 -0.528 -8.614 88.046
8 8.237 8.237 -0.08 -0.914 -8.593 76.053
9 9.275 9.275 -0.025 -0.836 -8.559 85.326
10 11.293 11.293 0.163 -0.833 -8.527 100.666
11 9.83 9.83 -0.358 -0.447 -8.499 78.533
12 9.83 9.83 -0.42 -0.443 -8.507 78.642
13 8.792 8.792 -0.399 -0.468 -8.517 69.37
14 9.292 9.292 -0.485 -0.463 -8.507 74.118
15 9.648 9.648 -1.177 -0.451 -8.487 78.536
16 9.792 9.792 -0.536 -0.457 -8.504 78.642
17 9.292 9.292 -0.439 -0.451 -8.47 80.562
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18 8.254 8.254 0.502 -0.574 -8.975 64.748
19 8.792 8.792 -1.451 -0.557 -8.398 73.101
20 9.165 9.165 -0.914 -0.482 -8.563 77.336
21 9.703 9.703 0.616 -0.442 -8.534 82.084
22 10.203 10.203 0.582 -0.466 -8.559 86.608
23 10.703 10.703 0.615 -0.455 -8.482 91.209
24 9.292 9.292 0.263 -0.545 -8.376 77.849
25 10.81 10.81 -1.5 -0.528 -8.394 89.513
26 11.31 11.31 -0.208 -0.569 -8.57 91.393
27 10.075 10.075 -1.977 -0.454 -8.534 86.502
28 11.737 11.737 -0.251 -0.457 -8.497 96.29
29 10.241 10.241 -1.276 -0.437 -8.429 86.832
30 11.241 11.241 -0.625 -0.51 -8.464 95.957
31 10.326 10.326 -1.265 -0.466 -8.494 84.876
32 10.826 10.826 -1.699 -0.465 -8.449 89.477
33 10.826 10.826 -0.688 -0.543 -8.513 86.410

CI1= Connectivity index order 1, DVY= Dipole vector Y, DVZ= Dipole vector Z, DE= Dielectric
energy, HE = HOMO energy, MR= Molar refractivity.

Table 3. Correlation matrix between descriptors which are present in model.

BA Cl1 DVY DVvZ DE HE MR
BA 1
Ci1 -0.211 1
DVY -0.285] -0.143 1
DvZ -0.415] -0.102 0.300 1
DE 0.456] 0.294| -0.888 -0.277 1
HE 0.134| 0.342] -0.371 -0.344 0.187 1
MR -0.191] 0.320 0.061 -0.063 0.108 0.339 1




Table 4. Observed, calculated and predicted (LOO) activity of derivatives.
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Obs. Act.? Model-1 Model-2
Compd. No.
(p Ki) Cal. Act. Pred. Act. Cal. Act. Pred. Act
1 -3.423 -2.924 -2.735 -2.995 -2.865
2 -1.633 -1.682 -1.693 -1.722 -1.739
3 -2.669 -2.794 -2.902 -2.809 -2.929
4 -1.544 -1.733 -1.773 -1.792 -1.835
5 -1.518 -1.633 -1.662 -1.696 -1.732
6 -3.086 -2.916 -2.869 -2.985 -2.963
7 -3.258 -3.330 -3.340 -3.280 -3.282
8 -3.440 -3.337 -3.280 -3.356 -3.3101
9 -2.998 -2.695 -2.544 -2.692 -2.539
10 -2.939 -3.317 -3.628 -3.277 -3.541
11 -2.318 -2.163 -2.133 -2.053 -2.034
12 -2.431 -2.232 -2.205 -2.142 -2.125
13 -2.079 -2.129 -2.140 -2.009 -2.003
14 -2.025 -2.287 -2.322 -2.200 -2.211
15 -1.602 -2.022 -2.062 -1.980 -2.009
16 -2.371 -2.457 -2.464 -2.39 -2.399
17 -2.350 -1.869 -1.785 -1.963 -1.931
18 -3.207 -3.173 -3.140 -3.101 -3.015
19 -2.314 -2.271 -2.261 -2.249 -2.234
20 -2.228 -2.113 -2.103 -2.158 -2.154
21 -1.950 -2.244 -2.321 -2.267 -2.356
22 -2.204 -2.597 -2.691 -2.648 -2.740
23 -3.005 -2.627 -2.517 -2.691 -2.616
24 -2.537 -2.845 -2.925 -2.843 -2.924
25 -3.310 -2.855 -2.749 -2.864 -2.760
26 -3.551 -4.218 -4.599 -4.235 -4.623
27 -0.886 -1.442 -1.623 -1.497 -1.670
28 -3.770 -2.973 -2.857 -2.959 -2.843
29 -1.875 -1.628 -1.592 -1.648 -1.616
30 -2.849 -3.133 -3.230 -3.250 -3.318
31 -2.605 -2.444 -2.427 -2.446 -2.429
32 -1.832 -2.045 -2.086 -2.015 -2.049
33 -3.453 -3.134 -3.068 -3.032 -2.992
* All data represent mean values for at least two separate experiments. Obs. Act. -

Observed activity, Cal. Act. — Calculated activity, Pred. Act. — Predicted activity by leave one out
cross validation.

The predictive ability of model-2 was also confirmed by external r*CVext. The robustness
of the selected model was checked by Y — randomization test. The low r* and q* values indicate
(data not shown) that the good results in our original model are not due to a chance correlation or
structural dependency of the training set.The predictive ability of this model was also confirmed
by external cross validation (equation 3). The selected model was externally validated by
randomly making training set of 27 compounds and test set of 6 compounds (28, 29, 30, 31, 32 and
33) (Table 5). QSAR was performed for training set and a model 3 was developed. This model was
used to predict the biological activities of test set of compound.
pKi=11.289 (£ 1.609) DE — 0.391 (+ 0.075) CI1 — 0.267 (£ 0.116) DVZ + 0.500 (£ 0.088) DVY
+3.166 (£ 0.793) HE +34.972 (£ 7.850)................ 3)
n=27,1r=0.884,1"=0.781, 1 .= 0.729, F = 14.96, SEE = 0.3632, P < 0.001.
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Table 5. Predicted activity of test compounds.

Compd. Observed activity Predicted activity
28 -3.771 -2.898
29 -1.875 -1.563
30 -2.849 -3.359
31 -2.605 -2.531
32 -1.833 -1.884
33 -3.453 -2.939

The variables used in the selected model have no mutual correlation. This model showed good
correlation coefficient (r) of 0.884 between descriptors Dielectric energy, Connectivity index 1,
Diploe vector Y, Dipole vector Z and HOMO Energy and A, receptor antagonist activity. Squared
correlation coefficient () of 0.781 explains 78.1% variance in biological activity.

The positive contribution of dielectric energy, dipole vector Y and HOMO energy on the
biological activity showed that the increase in the values of these parameters lead to better Al-
receptor antagonistic properties. The negative coefficient of connectivity index 1 indicated that the
increase of CI1 is detrimental to biological activity and the negative coefficient of dipole vector Z
is conducive to activity. Based on the developed QSAR model, new Al-receptor antagonist
derivatives can be designed with caution.

The predicted activities of newly designed series (table 6) of compounds show that they all
have predicted activities ranging from K; (nm) = 0.57uM to 6.7 uM whereas the reported series
has most active compound with K; (nm) = 7.7 uM.

3. Experimental
3.1 General Procedure:
Win CAChe 6.1 (molecular modeling software, a product of Fujitsu private limited, Japan),

Molecular modeling pro 6.1.0 (trial version, Cambridge software Corp.), STATISTICA version 6
(StatSoft, Inc., Tulsa, USA).

Table 6. The new designed series of compounds based on model 3

Comp.No. Compounds Structure Ki (nm),A; receptor
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A data set of 33 compounds for A;-receptor antagonist activity was used for the present
QSAR study. The molar concentrations of the compounds required to produce binding at receptor
site (in nm) converted to free energy related negative logarithmic values for undertaking the QSAR
study.

All 33 compounds’ structure were built on workspace of Win CAChe 6.1 (molecular
modeling software, a product of Fujitsu private limited, Japan) and energy minimization of the
molecules was done using Allinger’s MM2 force field followed by semi empirical PM3 method
available in MOPAC module until the root mean square gradient value becomes smaller than 0.001
kcal/mol A. Most stable structure for each compound was generated and used for calculating various
physico-chemical descriptors like thermodynamic, steric and electronic values of descriptors.

3.2 Descriptors calculation, QSAR models development and validation

In present study the calculated descriptors were conformational minimum energies (CME),
Zero-order connectivity index (CIO), First-order connectivity index (CIl), Second-order
connectivity index (CI2), dipole moment (DM), total energy at its current geometry after
optimization of structure (TE), heat of formation at its current geometry after optimization of
structure (HF), highest occupied molecular orbital energies(HOMO), lowest unoccupied molecular
orbital energies(LUMO), octanol-water partition coefficient(LOGP), molar refractivity(MR),
shape index order 1 (SI1), shape index order 2 (SI12), shape index order 3 (SI3), Zero-order valance
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connectivity index (VCIO), First-order valance connectivity index (VCII), Second-order valance
connectivity index (VCI2). Some of important descriptor which is present in model is shown in
Table 2

All the calculated descriptors (50 descriptors calculated by Win CAChe 6.1 and Molecular
modeling pro 6.1.0, the complete descriptors data set of all compounds will be provided on
request) were considered as independent variable and biological activity as dependent variable.
STATISTICA version 6 (StatSoft, Inc., Tulsa, USA) software was used to generate QSAR models
by stepwise multiple linear regression analysis. Statistical measures used were n-number of
compounds in regression, r-correlation coefficient, r’-squared correlation coefficient, F- test
(Fischer’s value) for statistical significance, SEE- standard error of estimation, q’- cross validated
correlation coefficient and correlation matrix to show correlation among the parameters.

The squared correlation coefficient (or coefficient of multiple determination) r* is a
relative measure of fit by the regression equation. Correspondingly, it represents the part of the
variation in the observed data that is explained by the regression. The correlation coefficient values
closer to 1.0 represent the better fit of the regression. The F-test reflects the ratio of the variance
explained by the model and the variance due to the error in the regression. High values of the F-
test indicate that the model is statistically significant. Standard deviation is measured by the error
mean square, which expresses the variation of the residuals or the variation about the regression
line. Thus standard deviation is an absolute measure of quality of fit and should have a low value
for the regression to be significant.

The predictive ability of the generated correlations was evaluated by cross validation
method employing a ‘leave-one-out’ scheme. Validation parameters considered were cross
validated 1’ or ¢, standard deviation based on predicted residual sum of squares (Spress) and
standard error of prediction (SDEP). The predictive ability of the selected model was also
confirmed by external r’CVext.

test
1; 1 (Yexp - Ypred)2

test -
igl (Yexp - Y'cr)2

>CVext=1 -

The robustness of a QSAR model was checked by Y — randomization test. In this
technique, new QSAR models were developed by shuffling the dependent variable vector
randomly and keeping the original independent variable as such. The new QSAR models are
expected to have low r*and q* values. If the opposite happens then an acceptable QSAR model can
not be obtained for the specific modeling method and data.
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