THEORETICAL INVESTIGATION OF THE STRUCTURAL PROPERTIES OF Sb₂S₃-As₂S₃ AND Sb₂Te₃-As₂S₃ GLASSES

K. N'Dri^{a*}, J. Sei^a, D. Houphouët-Boigny^a, J. C Jumas^b

^aLaboratoire de Chimie des Matériaux Inorganiques, UFR-SSMT, Université de Cocody 22 B.P 582 Abidjan 22 (Côte d'Ivoire).

^bLaboratoire des Agrégats Moléculaires et des Matériaux Inorganiques, CNRS ESA 5072, Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.

The general formulas of studied vitreous compositions of the Sb₂S₃-As₂S₃ and Sb₂Te₃-As₂S₃ systems are As_{0,4x}Sb_{0,4(100-x)}S₆₀ (10≤x(mol.%As₂S₃)≤100) and As_{0,4y}Sb_{0,4(100-y)}S_{0,6y}Te_{0,6(100-y)} (40≤ y(mol.% As₂S₃) ≤100), respectively. Glass-forming region of the Sb₂S₃-As₂S₃ system is wider than that of the Sb₂Te₃-As₂S₃ system. The Ordered Bond Network Model shows that all glasses of the above systems are stoichiometric vitreous compositions with only heteronuclear bonds: Sb₂S₃-As₂S₃ glasses contain mainly Sb-S and As-S bonds while the Sb₂Te₃-As₂S₃ system consists of S-Te, Sb-S and As-S bonds. For these vitreous compositions, the average coordination number (Z) determined by the constraints model is equal to 2.4. Glasses having contents of As₂S₃ beyond 75 mol% (Sb₂S₃-As₂S₃ system) and 90 mol% (Sb₂Te₃-As₂S₃ system) are thermally more stable than their counterparts of each system because they exhibit only the glass transition temperature (T_g) but not the crystallization temperature (T_c).

(Received September 3, 2007; accepted September 4, 2007)

Keywords: Glass-forming region, chemical bonds, average coordination number, glass transition temperature, optical gap.

1. Introduction

Chalcogenide glasses are vitreous materials whose composition contains one or more chalcogen elements S, Se or Te, as well as elements of the groups IV and V of periodic classification. These glasses are interesting materials because of their technological applications [1] and commercial importance [2]. In this study, the glass-forming regions of Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 systems, the nature of chemical bonds in their glasses determined by the Ordered Bond Network Model (OBNM) [3], the calculated average coordination number (Z) of antimony (Sb) and arsenic (As) atoms by the constraints model [4] and the stability of glasses quantified by numerical parameters $K_{SP} = (T_x^h - T_g)/(T_c^h - T_x^h)$ [5] and $K_{WO} = (T_x^h/T_m)$ [6] are discussed. The correlation between the glass transition temperature (T_g) , the optical gap (E_g) and the average coordination number (Z) in each system was investigated in order to find the possible structural modifications in the Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 glasses.

2. Synthesis and characterization of glasses

Glasses of Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 systems, whose formulas are $As_{0,4x}Sb_{0,4(100-x)}S_{60}$ (10≤ $x(mol.\% As_2S_3)$ ≤100) and $As_{0,4y}Sb_{0,4(100-y)}S_{0,6y}Te_{0,6(100-y)}$ (40≤ $y(mol.\% As_2S_3)$ ≤100)

-

^{*} Corresponding author: ezekmk@yahoo.fr

respectively, were prepared by direct synthesis from pure starting elements such as arsenic (As), antimony (Sb), tellurium (Te) and sulphur (S). Quartz ampoules were filled with ~ 0.3 g of the mixed elements and then evacuated to $\sim 10^{-3}$ Torr, sealed and heated to 900°C at the rate of 1°C /minute. The ampoules were held at this temperature for 24 hours and quenched in ice-water. The glassy state in the quenched samples was confirmed by X-ray diffraction at room temperature using Cu- K_{α} radiation (λ =1.5405 Å).

The thermal characteristics such as the glass transition temperature T_g , the onset crystallization temperature T_x^h , the peak crystallization temperature T_c^h and the melting temperature T_m , were measured by using DSC 121 Setaram apparatus at a heating rate of 5°C/minute in the studied temperature range (from 25°C to 650°C). The thermal stability of Sb₂S₃-As₂S₃ and Sb₂Te₃-As₂S₃ glasses was estimated using K_{SP} and K_{WO} parameters defined above.

The absorption spectra of stabilized glasses (at temperatures lower than T_g during 24 hours) were carried out using a spectrophotometer Beckman Acta Miv with double beam operating at the ambient temperature between the ultraviolet and the infrared (0.2 to 2.5 μ m) regions. The optical gap (E_g) values of the investigated glasses were got from the recorded spectra.

3. Results and discussions

3.1. Chemical composition of glasses.

The chemical composition of the investigated glasses is indicated in Table 1.

Sb	o_2S_3 -As $_2S_3$ system	Sb_2Te_3 - As_2S_3 system		
mol%As ₂ S ₃	Chemical composition	mol%As ₂ S ₃	Chemical composition	
10	$As_4Sb_{36}S_{60}$	40	$As_{16}Sb_{24}S_{24}Te_{36}$	
25	$As_{10}Sb_{30}S_{60}$	50	$As_{20}Sb_{20}S_{30}Te_{30}$	
50	$As_{20}Sb_{20}S_{60}$	60	$As_{24}Sb_{16}S_{36}Te_{24}$	
75	$As_{30}Sb_{10}S_{60}$	80	$As_{32}Sb_8S_{48}Te_{12}$	
100	$As_{40}S_{60}$ or As_2S_3	90	$As_{36}Sb_4S_{54}Te_6$	
		100	As ₄₀ S ₆₀ or As ₂ S ₃	

Table 1. Chemical composition of Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 glasses.

In the Sb_2S_3 - As_2S_3 system the atomic percentage of arsenic (As) increases from 4 % to 40 %. The one of antimony (Sb) decreases from 36 % to 0 %). For sulphur (S) atom, the atomic percentage remains equal to 60 %. As replaces Sb, the number of As-S bonds increases at the expense of Sb-S. In the Sb_2Te_3 - As_2S_3 system, the atomic percentages of As and S increase respectively from 16 % to 40 % and from 24 % to 60 %. Those of Sb and tellurium (Te) decrease from 24 % to 0 % and from 36 % to 0 %, respectively. As replaces Sb and Te is substituted by S. It is suggested that the number of As-S bonds increases at the expense of Sb-Te.

3.2. Glass-forming regions

The domain of glass formation in the Sb_2S_3 - As_2S_3 system extends from 10 to 100 mol % As_2S_3 . Sb_2S_3 -rich compositions having contents lower than 10 mol % As_2S_3 do not form glasses. The maximal solubility of Sb_2S_3 in the glasses is 90 mol %. The glass-forming region of Sb_2S_3 - As_2S_3 system obtained in this study is wider (from 10 to 100 mol % As_2S_3) than the one obtained on the same system [7-8] which is extended from 25 to 100 mol % As_2S_3 . The glass-forming region of Sb_2Te_3 - As_2S_3 system is between 40 and 100 mol % As_2S_3 . Sb_2Te_3 -rich compositions having contents less than 40 mol % As_2S_3 are crystalline. The maximum solubility of Sb_2Te_3 in the Sb_2Te_3 - As_2S_3 glasses is 60 mol %.

By comparing the domains of glass formation obtained in the two binary systems one observes that glass-forming region is reduced when one passes from Sb_2S_3 - As_2S_3 system to Sb_2Te_3 - As_2S_3 system. The substitution of sulphur (low atomic mass equal to 32.1 g/mol) by tellurium (high atomic mass equal to 127.6 g/mol) involves the reduction of glass-forming region. The glass-forming ability of sulphur is higher than thatof tellurium. This is in agreement with A. R. Hilton [9]. According to [9], the glass-forming tendency decreases in the order: S>Se>Te and P>As>Sb.

From the above consideratins, an analysis concerning the glass-forming ability of As₂S₃, Sb₂S₃ and Sb₂Te₃ compounds can be done. In the As₂S₃ compound, the environment of arsenic atoms is given by a trigonal pyramid AsS₃ (three sulphur atoms located at 2.28Å from arsenic atom) and its structural arrangement is two-dimensional (2D) with covalent As-S bonds. Glassy As₂S₃ is easily synthesized [10]. For the Sb₂S₃ compound the coordination number for antimony atoms is larger than 3 when they form bonds with sulphur atoms. The average coordination number for antimony is greater than the topological threshold for glasses (2.4) [11]. This is in agreement with the results of a Sb₂S₃ study where antimony is on two crystallographic sites [12]: one is of the pyramidal type SbS₃ with bonds lengths between 2.52 and 2.54 Å and the other is the square-based pyramid type SbS₅ with bonds lengths between 2.46 and 2.85 Å. The structural arrangement of Sb₂S₃ is one-dimensional (1D) with Sb-S bonds less covalent than the As-S bonds. The preparation of Sb₂S₃ glass requires high cooling rates [10]. Sb in the Sb₂Te₃ compound is found on poorly deformed octahedral sites constituted by three tellurium atoms located at 2.98Å and three others at 3.17 Å. Sb₂Te₃ is a semi-metal with a compact three-dimensional (3D) structure. It does not form glass with usual hardening. It can be concluded that the glass-forming ability of As₂S₃, Sb₂S₃ and Sb₂Te₃ compounds is due to the structural arrangement resulting from the condensation of coordination polyhedra (constituent elements) of the framework.

3.3. Chemical bond determination

Ordered Bond Network Model suggests that the formation of the heteropolar bonds is favoured over the homopolar bonds. And they are formed in decreasing order of their energies. Each atom is then coordinated by (8-N) atoms where N is the number of valence electrons. In this case, glass is made of the structural units which are the most stable chemical components of the system. The nature of chemical bonds in the glasses can be determined by using the parameter (R) which represents the ratio of covalent bonding possibilities of chalcogen atoms to covalent bonding possibilities of non chalcogen atoms [13]. The value of R=1 represents the case of the existence of only heteronuclear bonds in a given system, which indicates the existence of a chemical threshold. The R₁ and R₂ parameters of Sb₂S₃-As₂S₃ and Sb₂Te₃-As₂S₃ glasses can be calculated by using, respectively, the equations below:

$$R_1 = 2z(S)/(3z(As) + 3z(Sb))$$
 (1)

$$R_2 = (2z(S) + 2z(Te))/(3z(As) + 3z(Sb))$$
 (2)

where z(S), z(Te), z(As) and z(Sb) are the atomic fractions of S, Te, As and Sb by considering table 1 formulas, respectively. The atomic coordination number is 2 for chalcogens (S, Te) and 3 for non-chalcogens (As, Sb).

The calculation of R_1 and R_2 for each studied glass gives a value equal to 1. This means that all glasses can be then regarded as stoichiometric compositions in which only the heteropolar bonds are present. Stoichiometric glasses were found in As_2S_3 -GeS₂ and Sb_2S_3 -GeS₂ systems [14].

The bond energies D_{A-B} for heteronuclear bonds are calculated on the basis of the relation postulated by Pauling [15]:

$$D_{A-B} = (D_{A-A} \times D_{B-B})^{1/2} + 30(X_A - X_B)^2 \text{ (kcal/mole)}$$
(3)

where, D_{A-B} and D_{B-B} are energies of the homonuclear bonds and X_A and X_B are the electronegativity values of the atoms involved. The values of the energies of the of homopolar

bonds S-S, Te-Te, As-As and Sb-Sb are 212.762 kJ/mole, 137.94 kJ/mole, 134.18 kJ /mole and 126.24 kJ /mole, respectively. The electronegativities according to Pauling are: As = 2.18; Sb=2.05; S=2.58 and Te=2.10. The relative probability of chemical bonds formation can be calculated by the Boltzmann factors $\exp(-E/RT) = \exp(D/RT)$, where D is the bond energy, R the gas constant and T the reaction temperature (at which the samples were prepared during their synthesis) in Kelvins (T = 900+273.15=1173.15 K).

Table 2. Bond energy D and relative probability of heteronuclear bonds at 900°C in Sb₂S₃-As₂S₃ glasses

Bond	Bond energy D (kJ/mole) ^a	Relative probability
Sb-S	199.1	1
As-S	189.02	0.355
As-Sb	132.26	1.053×10 ⁻⁴

^aProbability of the Sb-S bond was taken as unity

Table 3. Bond energy D and relative probability of heteronuclear bonds at 900°C in Sb₂Te₃-As₂S₃ glasses.

Bond	Bond energy D (kJ/mole)	Relative probability
S-Te	200.26	1
Sb-S	199.11	0.893
As-S	189.02	0.3174
As-Te	136.86	1.50×10 ⁻³
Sb-Te	132.276	9.40×10 ⁻⁴
As-Sb	132.263	9.40×10 ⁻⁴

^aProbability of the S-Te bond was taken as unity

In the Sb_2Te_3 - As_2S_3 system, the chemical bonds can be formed in the following order: S-Te > Sb-S > As-Te > Sb-Te = As-Sb (Table 3). The As-Te, Sb-Te and As-Sb bonds will be formed when there are excess of Te, As and Sb atoms. The energetic S-Te bonds are probably used to connect the structural units SbS_3 and AsS_3 announced beforehand in the case of Sb_2S_3 - As_2S_3 glasses and which would be found in $Sb_2Te_3-As_2S_3$ glasses.

On the basis of the above discussion, one can deduce that the network structure of Sb_2S_3 - As_2S_3 glasses mainly consists of the strongest Sb-S and As-S bonds, whereas the structure of Sb_2Te_3 - As_2S_3 glasses mainly consists of the strongest S-Te, Sb-S and As-S bonds.

A quantitative criterion for predicting which types of materials are likely to be good glass formers has been proposed by Phillips [4, 17], who used a topological viewpoint in which connectivity is measured by the average coordination number Z. One implication of this result is that alloys such as a-As₂Se₃, which have Z=2.4, have the ideal network rigidity to optimise both the bond lengths and the bond angles. They should thus be excellent glass formers, i.e, yield amorphous structures after quenching from the melt at a relatively modest rate. The average coordination number Z of the central atom of the coordination polyhedrons of $Sb_2S_3-As_2S_3$ and $Sb_2Te_3-As_2S_3$ glasses can be obtained starting from the coordination numbers of the As, Sb, S and

Te elements and their atomic fraction by using the constraints model [4]. The average coordination numbers Z_1 and Z_2 of Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 glasses are calculated respectively by:

$$Z_1 = 3x(A_S) + 3y(S_D) + 2z(S)$$
(4)

$$Z_2 = 3x(As) + 3y(Sb) + 2z(S) + 2t(Te)$$
 (5)

where x(As), y(Sb), z(S) and t(Te) are the respective atomic fractions of As, Sb, S and Te by considering the formulas of Table 1. The calculation of Z_1 and Z_2 for each glass gives a value equal to 2.4. This result shows that when the content of As_2S_3 increases on each binary system, the average coordination number Z does not vary. There are no structural phase transitions in these glasses. Z does not change because Sb (with a coordination number 3) is replaced by As (which also has the same coordination number) in the Sb_2S_3 - As_2S_3 system. In the case of Sb_2Te_3 - As_2S_3 system with more Sb substitution by As announced above, Te replaces S (both atoms have the same coordination number 2). The invariability of Z was observed in $As_{40}Se_xTe_{(60-x)}$ system [18]. When x varies in this system, Z does not change as Se (with a coordination number 2) is replaced by Te (which has the same coordination number). The Ordered Bond Network Model and the constraints model can enable us to conclude that, the most important short range order parameters in the description of structure and bonding in Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 glasses are the coordination number of the elements entering the glasses and bond energies between the elements.

3.4. Thermal and optical properties

The analysis of thermal properties (tables 4 and 5) show two groups of glasses for each system when the molar percentage of As_2S_3 increases: glasses having crystallization temperatures (T_c^h) and those which do not exhibit any crystallization. For glasses of the first group, their stability is studied by calculating numerical parameters K_{SP} and K_{WO} which are sensitive to the molar percentage of As_2S_3 . Glasses of the second group (which do not have crystallization temperature) are thermally more stable than their counterparts of the first group on each system. Atoms of these materials although being mobile above T_g do not have any tendency to crystallize when they are heated. The characteristic structural disorder of these glasses is maintained. In these two groups of glasses, the thermal stability against crystallization is probably due to the formation of stable structural units (SbS₃ and AsS₃) which constitute the framework of the vitreous networks when the molar percentage of As_2S_3 increases.

The thermal and optical properties T_g and E_g , respectively, cannot be discussed in term of the average coordination number Z because they don't depend on Z=2.4. Thais is in agreement with [19] which showes that most physical properties of glasses are not universal functions of Z. Contrary to the As-Te glasses, where T_g varies as a function of Z which is between 2.55 and 2.73 [20], the optical gap (E_g) and T_g of the $Ge_{20}Se_{80-x}Bi_x$ glasses decrease when Z increases from 2.4 to 2.52 [21]. In the two quoted examples T_g and E_g depend on Z.

Table 4. Values of thermal characteristics (T_8 , T_x^h , T_c^h and T_m), stability parameters (K_{SP} and K_{WO}) and the optical gap (Eg) of Sb_2S_3 - As_2S_3 glasses.

% As ₂ S ₃	$T_g(K)$	$T_x^h(K)$	$T_c^h(K)$	$T_m(K)$	K_{SP}	K_{WO}	E _g (eV)
10	493	505	516	812	0.268	0.622	1.61
25	491	529	532	765	0.232	0.691	1.80
50	487	568	584	682	2.661	0.833	1.90
75	485	-	i	1	I	-	1.97
100	487						2.15

% As ₂ S ₃	$T_g(K)$	$T_{x}^{h}(K)$	$T_{c}^{h}(K)$	$T_m(K)$	K_{SP}	K_{WO}	E _g (eV)
50	440	466	474	557	0.473	0.837	0.82
60	443	471	481	559	0.632	0.843	0.88
80	458	497	520	580	1.958	0.857	1.04
90	462				1		1.31
100	487						2.15

Table 5. Values of thermal characteristics (T_g , T_x^h , T_c^h and T_m), stability parameters (K_{SP} and K_{WO}) and the optical gap (E_g) of Sb_2Te_3 - As_2S_3 glasses.

---: Absence of thermal properties (T_c^h and T_m) from DSC curves and values of stability parameters (K_{SP} and K_{WO}) cannot be calculated.

DeNeufville and Rockstad [22] proposed and established the empirical relation between T_g , E_g and Z. They showed that these parameters can be connected by the relation:

$$T_g \approx T_g^0 + \beta(Z-2)E_{04} \tag{6}$$

 T_g is the glass transition temperature, T_g^0 is the extrapolated value of T_g obtained when E_{04} is equal to 0. β is a linear proportionality constant for value of Z (the average coordination number). E_{04} is the energy at which the optical absorption coefficient is 10^4 cm⁻¹ and is the measure of the optical gap E_g . The equations of correlation between T_g , E_g and Z of Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 systems are obtained by applying (6):

$$T_g \approx 520.8 - 15.72 \text{ E}_g \quad \text{for Sb}_2 \text{S}_3 - \text{As}_2 \text{S}_3$$
 (7)

$$T_8 \approx 413.8 + 34.05 \text{ E}_g \quad \text{for Sb}_2\text{Te}_3\text{-As}_2\text{S}_3$$
 (8)

Fig. 1 indicates the T_g -E_g-Z correlation. The contrary evolution of E_g and T_g on the Sb₂S₃-As₂S₃ system and the increase in E_g and T_g on the Sb₂Te₃-As₂S₃ system enable to suggest that the physical characteristics T_g and E_g are not dominated by the structural units of studied glasses because T_g and E_g don't vary with Z=2.4. One can deduce that glasses of Sb₂S₃-As₂S₃ and Sb₂Te₃-As₂S₃ systems are effectively formed by the structural units SbS₃ and AsS₃ which do not change in each system.

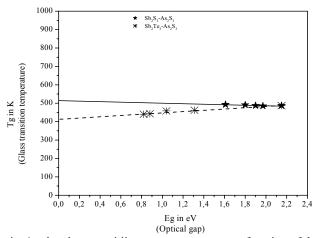


Fig. 1. The glass transition temperature T_g as a function of the optical gap E_g for $Sb_2S_3 - As_2S_3$ and $Sb_2Te_3 - S_2S_3$ glasses with fixed value of the average coordination number Z=2.4.

4. Conclusions

The X-ray diffraction at room temperature is used to confirme the vitreous state of the investigated samples in the Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 systems. This study shows that the substitution of sulphur by tellurium reduces the domain of glass formation because the glassforming region becomes smaller when one passes from Sb_2S_3 - As_2S_3 system to Sb_2Te_3 - As_2S_3 system. The theoretical study by means of Ordered Bond Network Model indicates that, the studied glasses of the above systems are stoichiometric because of the existence of only heteronuclear bonds in these materials. Thus, Sb_2S_3 - As_2S_3 and Sb_2Te_3 - As_2S_3 glasses are made up mainly of Sb-S and As-S bonds and S-Te, Sb-S and As-S bonds, respectively. The calculated average coordination number (Z) of all studied glasses by using the constraints model is 2.4. This implies that no structural phase transition occurs in the glasses. The correlation between T_g , E_g and Z indicates that these thermal and optical properties are not dominated by the structural units (SbS₃ and AsS₃) because T_g and E_g do not vary with Z=2.4.

References

- [1] K. Tanaka, Phys. Rev. **B39**, 1270 (1989).
- [2] A. B. Seddon, J. Non-Cryst. Solids 44, 184 (1995).
- [3] J. Bicerano, S. Ovshinsky, J. Non-Cryst. Solids 74, 75 (1985).
- [4] J. C. Phillips, J. Non-Cryst. Solids 43 (1981) 37.
- [5] M. Saad, M. Poulain, Mater. Sci. Forum 19&20 (1987) 11.
- [6] T. Wakasugi, R. Ota, J. Fukuraya, J. Am. Ceram. Soc. 75 (1992) 29
- [7] A. Bouaza, A. Ibanez, J. Olivier-Fourcade, E. Philippot, M. Maurin, Mat. Res. Bull. **22**, 973 (1987).
- [8] J. M. Durand, P. E. Lippens, J. Olivier-Fourcade, J. C. Jumas, J. Non-Cryst. Solids 192&193 364 (1995).
- [9] A. R. Hilton, J. Non-Cryst. Solids 2, 28 (1970).
- [10] L. Cervinka, A. Hruby, J. Non-Cryst. Solids 1, 210 (1980).
- [11] J. C. Phillips, J. Non-Cryst. Solids 34, 835 (1979).
- [12] P. Bayliss and W. Nowacki, Z. Kristallogr. 135, 308 (1972).
- [13] L. Tichy, H. Ticha, J. Non-Cryst. Solids 189, 141 (1995).
- [14] T. Kavetskyy, R. Golovchak, O. Shpotyuk, J. Filipecki, J. Swiatek, Chalc. Lett. **1**(10), 125 (2004).
- [15] L. Pauling, The nature of the chemical bonds. 1960. Cornell University Press, Third edition. pp 85, 92.
- [16] M. A. El Idrissi-Raghni, P. E. Lippens, J. Olivier-Fourcade, J. C. Jumas, J. Non-Cryst. Solids 192&193, 191 (1995).
- [17] J. C. Phillips, J. Non-Cryst. Solids 35&36, 1157 (1980).
- [18] P. K. Thiruvikraman, Bull. Mater. Sci. 29(4), 371 (2006) -374.
- [19] M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay and C. A. Angell. Phys. Rev. Lett. 64, 1549 (1990).
- [20] G. Achamma, D. Sushamma, P. Predeep, Chalc. Lett. 3(4), 33 (2006).
- [21] P. Sharma, M. Vashistha, I. P. Jain, Chalc. Lett. 2(11), 115 (2005) -121.
- [22] J. P. deNeufville and H. K. Rockstad, in Amorphous and Liquid Semiconductors, J. Stuke and W. Brenig, eds., Taylor and Francis, London, (1974) 419.