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The Wiener index of a graph G is defined as W(G) = 1/2∑{x,y}⊆V(G)d(x,y), where V(G) 
is the set of all vertices of G and for x,y ∈ V(G), d(x,y) denotes the length of a minimal 
path between x and y. In this paper, we first report our recent results on computing 
Wiener, PI and Balaban indices of some nanotubes and nanotori. Next, the PI and Szeged 
indices of a new type of nanostar dendrimers are computed for the first time. 
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1. Introduction 
 
The first use of a graph invariant for the correlation of the measured properties of 

molecules with their structural features was made in 1947 by the chemist Harold Wiener, [1]. In 
that year, he introduced the notion of path number of a graph as the sum of the distances between 
any two carbon atoms in the molecules, in terms of carbon-carbon bonds. Next Hosoya [2], named 
such graph invariants, topological index. With hundreds of topological indices one would expect 
that most molecules could be well characterized and their physicochemical properties correlated 
with the available descriptors. 

Khadikar [3], defined a new topological index and named it Padmakar-Ivan index. They 
abbreviated this new topological index as PI. This newly proposed topological index, PI, does not 
coincide with the Wiener index (W) for acyclic (trees) molecules. The derived PI index is very 
simple to calculate and has a discriminating power similar to that of the W index. 

Let G be a molecular graph and x ∈ V(G). We denote by d(x), the summation of 
topological distances between x and all vertices of G. The Balaban index of a molecular graph G is 
defined by Balaban [4,5]. Then Balaban and co-authors [6,7], investigated this index even for 
infinite graphs.  

In a series of papers, Diudea and coauthors [8-14] computed the Wiener index of some 
nanotubes. In this paper, we report our recent results in computing topological indices of 
nanotubes and nanotori. Our notation is standard and mainly taken from [15,16]. We encourage 
reader to consult [17-28] for discussion and background material about topological indices of 
nanotubes and nanotori. 

 
 
2. History 
 
In this section we describe some notations which will be kept throughout. We now recall 

some algebraic definitions that will be used in the paper. Let G be a simple molecular graph 
without directed and multiple edges and without loops, the vertex and edge-shapes of which are 
represented by V(G) and E(G), respectively. If e is an edge of G, connecting the vertices u and v 
then we write e=uv. The number of vertices of G is denoted by n. The distance between a pair of 
vertices u and w of G is denoted by d(u,w). Wiener index of a graph G is defined as W(G) = 
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1/2∑{x,y}⊆V(G)d(x,y). 

The Balaban index of a molecular graph G is defined as J(G) = m/(μ+1)Σe=uv[d(u)d(v)]-0.5, 
where m is the number of edges of G, μ(G) = |E(G)|-|V(G)|+1 is the cyclomatic number of G and 
for every vertex x, d(x) is the summation of topological distances between x and all vertices of G. 

We now define for e=uv two quantities neu(e|G) and nev(e|G). neu(e|G) is the number of 
edges lying closer to the vertex u than the vertex v, and nev(e|G) is the number of edges lying 
closer to the vertex v than the vertex u. Then the Padmakar–Ivan (PI) index of a graph G is defined 
as PI(G) = ∑[neu(e|G)+ nev(e|G)]. We notice that the edges equidistant from both ends of the edge 
uv are not counted in calculating the PI index of a graph. It is easy to see that |E(G)| = N(e) + 
neu(e|G) + nev(e|G). 

Graphene is a generic name for the carbon allotropes produced by laser vaporization of 
graphite. They include, besides the famous spherical fullerenes, nanotubes, and their closed, 
circular forms with toroidal shape. exist. Carbon nanotubes, the one-dimensional carbon 
allotropes, are intensively studied, with respect to their promise to exhibit unique physical 
properties: mechanical, optical, electronic, etc. However, only a relatively small number of studies 
on the carbon nanotoroidal cage structures 

The following result determines the exact value of the Wiener index of a polyhex nanotori. 
Theorem 1: (Yousefi-Ashrafi). Armchair and zig-zag polyhex nanotori have the same 

Wiener index as follows: 
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The first serious work for computing the PI index of chemical graphs was done by 
Khadikar and co-authors [20,21]. They introduced a method for the calculating the PI index of 
hexagonal chains. In [22], Deng introduced another method for calculating the PI indices of 
catacondensed hexagonal systems according to the lengths of their segments, and to determine the 
catacondensed hexagonal systems with minimum and maximum PI index.  

We now report on our recent results related to PI index of nanotubes and nanotori. 
Theorem 2: (Ashrafi-Loghman [17]). The PI index of the zig-zag polyhex nanotube in the 

terms of their circumference (2p) and their length (q), Figure 1,.is as follows: 
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Fig. 1. A Zig-zag TUHC6[20,q]. 

 
Using a similar arguments in [18,19] Ashrafi and Loghman computed the PI index of 

some other nanotubes. They proved that: 
Theorem 3: The PI index of armchair polyhex nanotube in the terms of their 

circumference (2p) and their length (q), Figure 4, is as follows: 
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where X = 9p2q2 – 12p2q – 5pq2 + 8pq + 4p2 – 4p and Y = 9p2q2 – 20p2q –pq2 + 4pq + 4p3 + 8p2 – 
4p. 

Theorem 4: The PI index of TUC4C8(S)[4p,q] nanotube in the terms of their 
circumference (2p) and their length (q), Figure 3, is as follows: 

{4 8
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where X = 36p2q2 – 28p2q +8p2 - 8pq2 and Y = 36p2q2 – 36p2q – 4pq2 + 4pq + 4p3 + 4p2. 

 
 

Fig. 2. An Armchair TUVC6[20,n] 
nanotube. 

Fig. 3: TUC4C8(S) Nanotubes. 

 
We now investigate the Balaban index of the chemical graphs of an armchair polyhex 

nanotorus and TUC4C8(S) nanotorus. For simplicity, we denote these graphs by T1 and T2, 
respectively. We first consider an armchair nanotorus T1, Figure 1. The molecular graph of T1 has 
exactly pq vertices and 3pq/2 edges, Figure 4. So the cyclomatic number of T1 is μ = 3pq/2 – pq + 
1 = pq/2 +1. 

 
Theorem 5: The Balaban index of T1 is as follows: 
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 Consider the chemical graph of a TUC4C8(R) nanotorus T2 = T[m,n], Figure 2, in which n 
is the number of rhombs on the level 1 and the length of torus is m.  
In the end of this paper, we state a formula for the Balaban index of TUC4C8(S) nanotori, with 
exactly m/2 and n/2 octagons in every row and column, respectively. Clearly, T3 has exactly 2mn 
vertices and 3mn edges and so μ(T3)=mn + 1. 
 
Theorem 6: The Balaban index of a TUC4C8(S) nanotorus, Figure 3, is as follows: 
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3. Main results 
 
The subject of Nanostar is one of the main topics of Nanobiotechnology. In recent years, 

the Nanostar, a phenylacetylene dendrimer, has attracted attention due to its potential applications. 
The Nanostar absorbs ultraviolet photons at its terminal groups and the energy transfers from the 
periphery to the core where it is collected with 99% efficiency and then it is emitted in the visible 
range. This energy transfer process is in the order of picoseconds. Due to its localized excitations, 
the Nanostar was studied as the sum of separate units, which are 24 two-ring systems, 4 three-ring 
systems, 2 four-ring systems and a core. The aim of this section is computing the PI index of two 
types of Nanostars I and II, Figures 3 and 4.  

 

 
Fig. 3. A Nanostar of Type I, with n = 3 and k = 1. 

 
Fig. 4. A Nanostar of Type II, with n = 3 and k = 1. 

 
 Suppose G = G(n,k) is the graph of a Nanostar of type I. From Figure 3, we can see that if 
e is an edge of a hexagon of G then N(e) = 2, otherwise N(e) = 1. We assume that A is the set of 
all hexagons, B is the set of all edges outside A, a = |A| and b = |B|. We calculate that a = 1 + 2n + 
22(n−1) + 23(n−2) + … + 2k+1(n−k) + 2k+1 and b = a−1+2k+2. Therefore, ( ) 12e A N e a

∈
=∑ and 

( )e B N e b
∈

=∑ . Hence PI(G) = |E(G)|2 − ( )e A N e
∈∑ − ( )e B N e

∈∑  = 36a2 + b2 + 12ab – 12a –

b. We now compute the PI index of the Nanostar H = H(n,k) of type II, Figure 4. A similar 
argument as above, shows that if e is an edge of a hexagon of H then N(e) = 2, otherwise N(e) = 1. 
Suppose A, B, a, and, b are defined as above. Then a = 1 + k(1+2 + 22 + … + 2n) = 1 + k(2n+1− 1) 
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and b = a – 1. Therefore, ( ) 12e A N e a
∈

=∑ and ( )e B N e b
∈

=∑ . Hence PI(G) = |E(G)|2 − 

( )e A N e
∈∑ − ( )e B N e

∈∑  = 36a2 + b2 + 12ab – 12a –b. 

 
 We end our paper with the following open questions: 
 
Question 1: Is there a simple closed formula for the Szeged indices of a Nanostar of types I and 
II? 
 
Question 2: Is it true that for every positive integer n, there exists a Nanostar T with this condition 
that PI(T) = n or Sz(T) = n? 
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