
Digest Journal of Nanomaterials and Biostructures          Vol. 7 No. 3, July - September 2012, p. 1103 - 1115 
 
 

 
 

FREQUENCY AND SENSITIVITY ANALYSIS OF ATOMIC FORCE MICROSCOPE 
(AFM) CANTILEVER CONSIDERING COUPLED FLEXURAL-TORSIONAL 

VIBRATIONS 
 

 
MINA MOOSAPOUR, MOHAMMAD A. HAJABASI*,  
HOSSEIN EHTESHAMI 
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, 
Kerman, P.O.Box:761175-133, Iran. 
 
 
Frequency analysis and modal sensitivity of an atomic force microscope (AFM) cantilever 
is presented in this paper. Closed-form expressions for frequency equation and sensitivity 
of vibration modes are derived for the tip-cantilever system as the cantilever undergoes 
coupled lateral-vertical bending with torsional vibration. In this work, the effects of the 
sample surface contact stiffness and the cantilever to tip lengths ratio on resonant 
frequencies and sensitivities are assessed. The results show that the resonant frequency is 
constant in low and high values of the normal and lateral contact stiffnesses and there is a 
shift of frequency in a specific value of stiffness. Also, in comparison with the values of 
normal contact stiffness, frequency shift, due to the tip–sample interaction, occurs in lower 
values of lateral contact stiffness. In the low values of contact stiffnesses, the lower-order 
vibration modes are more sensitive than the higher-order modes. The situation is 
completely reversed in very high contact stiffnesses. In addition the resonant frequencies 
are more sensitive to the variation of lateral contact stiffness with respect to the variation 
of normal contact stiffness.  
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1. Introduction 
 
The AFM was invented in 1986 by Binnig, Quate and Gerber [1]. The AFM relies on a 

scanning technique to produce very high resolution, 3-D images of sample surfaces. The AFM 
measures ultra-small forces (less than 1 nN) that exist between the AFM tip surface and a sample 
surface. These small forces are measured by observing the motion of a very flexible cantilever 
beam with an ultra-small mass [2]. The deflection of the cantilever is measured by an array of 
photodiodes that receives the reflected laser beam from the top surface of the cantilever. These 
data collection can be used to determine some important characteristics of the sample surface such 
as friction, visco-elasticity, surface topography and many other mechanical properties. AFMs can 
be used to study surfaces, whether they are electrically conductive or insulating.  

The principal modes of operation for an AFM are static mode and dynamic mode. In static 
mode, the cantilever is dragged across the surface of the sample and the contours of the surface are 
calculated directly using the deflection of the cantilever. In the dynamic mode, the cantilever is 
externally oscillated at or close to its fundamental resonance frequency by its holder or the sample. 
The oscillation amplitude, phase and resonance frequency are changed by the interaction force 
between the tip and the surface. These changes in the vibration parameters with respect to the 
external reference oscillation are used to reveal information about the surface properties of 
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samples. Compared to static AFM, dynamic AFM can provide a better signal-to-noise ratio and 
higher resolution in measurement of material and surface properties [3]. Three types of dynamic 
modes of AFM can be categorized in terms of the cantilever deflection and excitation mode. They 
are: contact mode, non-contact mode, and tapping mode (TM); torsional resonance (TR) mode; 
and lateral excitation (LE) mode. In contact mode, non-contact mode, and TM, generally the 
cantilever is excited by the vertical harmonic motion of its holder. In TR mode, two piezoelectric 
elements are attached to the cantilever holder and vibrate out-of-phase to drive the cantilever into 
torsional oscillation. In LE mode, the cantilever is driven by the lateral motion of the sample 
through tip–sample interaction [4]. 

In a series of works, Bhushan et al. [3-6] have developed the analytical and numerical 
models for dynamic simulation of AFM cantilevers at different dynamic modes with and without 
tip–sample interaction. Song et al [4] was developed the 3D Finite Element beam model of tip–
cantilever systems for numerical simulation of free and surface-coupled dynamics of tip–cantilever 
system in various dynamic modes of AFM.  

The imaging rate and contrast of topographic images can be influenced by the resonant 
frequency and modal sensitivity, respectively. Therefore, the study of the resonant frequency and 
the sensitivity of an AFM cantilever are significant and have been investigated by many 
researchers. Turner and Wiehn [7] have studied the sensitivities of the flexural and torsional modes 
for AFM cantilevers and derived a closed-form expression for cantilevers with constant cross 
sections. They have developed an approximate solution for cantilevers with other shapes using the 
method of Rayleigh–Ritz. They found that the shape of the cantilever can considerably affect the 
modal sensitivity. Chang [8] have studied the sensitivity of flexural vibration modes for the 
rectangular cantilever of an AFM and obtained a closed-form expression by taking into account 
the cantilever slope. He perceived that increase of the cantilever slope apparently decreases the 
sensitivity at low contact stiffness. Chang et al. [9] analyzed the interactive damping effect 
occurring between the cantilever tip and sample surface on the sensitivity of flexural and torsional 
vibration modes of AFM rectangular cantilever. They derived a closed-form expression for the 
frequency equation and flexural and torsional sensitivity. They observed that sensitivity of flexural 
and torsional of first mode decreased with increasing normal and lateral interactive damping when 
the normal and lateral contact stiffness was low. Hsu et al. [10] studied the flexural vibration for an 
AFM cantilever using the Timoshenko beam theory and presented a closed-form expression for the 
frequencies of vibration modes. They demonstrated that the Timoshenko beam theory is able to 
predict the frequencies of flexural vibration of the higher modes with higher contact stiffness. 
Without considering vertical bending, Lee et al. [11] investigated the influence of the contact 
stiffness and the cantilever to tip lengths ratio on the resonant frequency and the sensitivity of 
lateral vibration modes. In their study, the cantilever can vibrate in a combination of torsion and 
lateral bending modes. Kahrobaiyan et al. [12] studied resonant frequencies and flexural 
sensitivities of an AFM with assembled cantilever probe (ACP). They assessed the effects of the 
sample surface contact stiffness and some geometrical parameters on both flexural and torsional 
resonant frequencies and sensitivities. 

Generally, a vibrating cantilever has four uncoupled deflection: namely vertical bending, 
lateral bending, torsion and extension. For a rectangular cantilever, the torsional and lateral 
stiffness are nearly two and the extension stiffness is four to five orders of magnitude higher than 
the vertical stiffness. Thus in this paper, the displacement component that is related to the 
extension, can be neglected.  

In contact mode, non-contact mode and TM, vertical bending dominates the deflection of 
the cantilever, whereas in TR and LE modes the deflection of the cantilever is in fact a 
combination of torsion and lateral bending. These couplings between the vertical bending, lateral 
bending and torsion are generally ignored in the literature for the sake of simplicity. Hence, a 
model that can consider all the couplings is very desirable. In this paper, by considering the 
coupling of lateral-vertical bending with torsional vibration (flexural-torsional), the resonant 
frequencies and the modal sensitivities analyses are carried out using an analytical method. The 
flexural-torsional coupling is due to the presence of the tip–sample interaction. Effects of normal 
and lateral contact stiffnesses and the cantilever to tip lengths ratio on the natural frequencies and 
the modal sensitivities of the system will be presented.  
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where E and G are Young’s modulus and shear modulus,     is the mass density, A is the cross-
section area, J is the torsional constant, Iy is the moment of inertia about the Y axis,  Iz  is the 
moment of inertia about the Z axis and Ip is the polar area moment of the inertia. For a cantilever 

with a rectangular cross section, DhA  , 123DhI y  ,  123hDI z  , 12)( 33 hDDhI p   

and ))(052.0)(63.01()31( 53 DhDhDhJ  .  The determination of the characteristics 
equation requires four vertical-bending-related, four lateral-bending-related and two torsional-
related boundary conditions. The ten boundary conditions with considering interaction are  
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At the built-in end the deflections and the slopes of the beam must be zero. Thus, if the end 

0X  is assumed to be built-in, then the boundary conditions given by Eqs. (4.a), (4.e) and (4.b), 
(4.f) correspond to conditions of zero displacements and slopes, respectively. The boundary 
conditions given by Eq. (4.i) correspond to zero twist angle. At the free end, the moments and the 
shear forces of the beam must be zero. Thus, if the end LX   is assumed to be free, then 
boundary conditions given by Eqs. (4.c), (4.d), (4.g), (4.h) and (4.j) correspond to the moments 
balanced and forces balanced between the end beam with the linear springs nK , lK  and tK . For 

harmonic vibrations the displacements and torsional rotation can be expressed in the form of 
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Where ω is the angular frequency of vibration, the dimensionless parameters are defined as 
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Utilizing these dimensionless parameters and substituting Eq. (5) into Eqs. (1) to (4), the coupled 
equations and the associated boundary conditions can be simplified to the following dimensionless 
differential equations and boundary conditions 
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2.2. Solution 
The general solutions of Eqs. (7) to (9) can be expressed as 
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Where 41...AA , 41...BB  and 21,CC  are the constants to be determined from the boundary 
conditions. By substituting the Eqs. (11) to (13) into the boundary conditions, (10), a characteristic 
equation can be obtained to determine the resonance frequencies. This leads to the following 
characteristic equation 
 

        
    

     

    )cos()cosh(12)sin()(sinh)(sin

)cos()sinh()cos(2)(cos)cosh(

)sin()cos(2)(cosh)(sinh)(sin

)cos()sinh(2)(cos)cosh()cos(

2)sin(2)(cosh
1

,,

2322

23223

23223422

224

422423
2

LLpLbLL

pLpbLLqLbL

LqLbLbsLL

LLsLsLL

sLsLs
b

pC

l

l

lln

lnln

lnlnlnln





















 (14)

 
The roots of Eq. (14) are the eigenvalue or natural frequencies of the system. The resonant 

frequency based on the dimensionless parameter GJLIp p
222   in Eq. (6.b) is obtained, and 

is given as 
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The sensitivity of the probe can be calculated from the frequency, which can be measured. 

The sensitivity is defined as the change in the vibration frequency of a mode with respect to the 
change in normal or lateral contact stiffness [7,8]. Once differentiation of Eq. (14) with respect to 

n  implies that 
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The relationship between frequency f  and normal contact stiffness, n , can be expressed as 

 

npnn

p

LI

GJp

p

ff

 













22

1
 

(17)

 
The dimensionless form of the sensitivity due to normal contact stiffness is given by 
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The sensitivity due to lateral contact stiffness is derived in the same way as the sensitivity due to 
normal contact stiffness. Consequently, differentiation of Eq. (14) with respect to l implies that 
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Therefore, the sensitivity due to lateral contact stiffness is given by  
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(21)
From the above equations, the sensitivities due to normal and lateral contact stiffness as 

function of dimensionless parameters for each mode can be calculated. 
 
 
3. Numerical Results and discussions 
 
In this section, based on the presented analytical method, the frequency analysis and 

modal sensitivities of an AFM cantilever are focused. Numerical results are presented to reveal the 
influence of the normal and lateral contact stiffness and tip length on the coupled frequencies and 
modal sensitivities of the AFM cantilever. To validate the solution procedure, for the case of 

0 pl   and  L  the characteristics equation (14) can be simplified as 

 

      coshsincossinh1coshcos, 3  nnC  (22)

The above frequency equation is the same as the form obtained by Turner and Wiehn [5]. While 
for the case of 0 n  ,  L  and ppL   the characteristic equation (14) can be reduced 

to  

pC

C

d

dp l

l 






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      


 cossinhsincoshcos
1

coshcos1sincos,
32

 ppq
b

ppppC lll

 
 

(23) 

As can be seen, this is the same as the frequency equation obtained by Lee and Chang 
[11].  

The resonant frequency and modal sensitivities were expressed as functions of geometrical 
and mechanical properties of probe and contact stiffnesses. The values of the geometrical and 
mechanical properties of this case-study probe are considered as 150E  GPa, 64G  GPa, 

2300  kg/m3, 200L  μm, 40D  μm, 5h  μm, 15H  μm [11]. The lateral contact 

stiffness can be assumed as nl KK 9.0  [14].  The energy dissipation due to the tip–sample 

interaction is neglected.  Once the normal and lateral contact stiffnesses are given, the natural 
frequencies and modal sensitivities of the tip–cantilever system under linear interactions tip–
sample are obtained by solving the equations (14), (19) and (21). Each mode has a different 
resonant frequency and sensitivity to variations in contact stiffnesses. In the forthcoming figures, 
the modal sensitivities and resonant frequency of the first five vibration modes and the variations 
in the sensitivities and natural frequency of first mode at various tip lengths of the system will be 
shown. The resonant frequency of the first five vibration modes of the cantilever as a function of 
dimensionless normal and lateral contact stiffnesses, n  and l  are illustrated in Fig.2. and Fig.3, 

respectively. It can be observed that as n  and l  increase,  the resonant frequency commences 

from a constant value at low values of normal and lateral contact stiffnesses then increases until it 
finally reaches another constant value at very high values of normal and lateral contact stiffnesses.  

 

 
Fig. 2. The cantilever’s first five resonant frequencies as a function of normal contact stiffness,  

n , for an AFM cantilever. 
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Fig. 3. The cantilever’s first five resonant frequencies as a function of lateral contact stiffness, 

 l , for an AFM cantilever. 

 
The modal sensitivities of the first five vibration modes as a function of dimensionless 

normal and lateral contact stiffnesses, n  and l  are shown in Fig. 4 and Fig.5, respectively. It 

can be observed that as n  and l  increase, the modal sensitivities of all the vibration modes 

decreased. Moreover, for low normal and lateral contact stiffnesses, the low-order modes are more 
sensitive than high-order modes and the first mode is the most sensitive. Whereas the normal and 
lateral contact stiffnesses become larger, it can be noted that high-order modes become more 
sensitive. Comparing Fig.2 with Fig. 3, it can be seen that in comparison with the values of normal 
contact stiffness, frequency shift, due to the tip–sample interaction, occurs in lower values of 
lateral contact stiffness. Comparing Fig.4 with Fig. 5, it can be seen that the resonant frequencies 
are more sensitive to the variation of lateral contact stiffness with respect to the variation of 
normal contact stiffness.  

 
Fig. 4. Variation of sensitivity due to normal contact stiffness, nS , as a function of  

n  for an AFM cantilever for the first five modes. 
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Fig. 5. Variation of sensitivity due to lateral contact stiffness, lS , as a function of l  for an AFM 

cantilever for the first five modes. 
 
 

The tip length, H , can change sensitivity and the resonance frequency by producing a 
force and moment at the free end of the cantilever. Therefore, it is of interest to learn how the tip 
length affects modal sensitivities and resonant frequency of first mode. The resonant frequency of 
first mode of cantilever as a function of the normal contact stiffness, n , and the cantilever to tip 

lengths ratio, LH , is shown in Fig. 6. This figure shows that increasing the tip length leads to 

increasing the resonance frequency when the normal contact stiffness, n , becomes large. The 

resonant frequency and dimensionless sensitivity of first mode of cantilever as functions of the 
lateral contact stiffness, l , and the cantilever to tip lengths ratio, LH , are shown in Fig. 7 and 

Fig. 9, respectively. This figures show that for various lateral contact stiffness, l , increasing the 

cantilever to tip lengths ratio has little effects on the dimensionless sensitivity and resonance 
frequency. Dimensionless sensitivity of first mode of cantilever as a function of the normal contact 
stiffness, n , and the cantilever to tip lengths ratio, LH , is depicted in Fig. 8. From this figure, 

it can be seen that at low and intermediate normal contact stiffnesses with the increase of the 
cantilever to tip lengths ratio, the dimensionless sensitivity increases. But at very high normal 
contact stiffness, n , increasing the tip length decreases the dimensionless sensitivity. 
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Fig. 6. Resonant frequency of first mode as a function of the normal contact stiffness, n , 

 and the cantilever to tip lengths ratio, LH . 

 
Fig. 7. Resonant frequency of first mode as a function of the lateral contact stiffness, l ,  

and the cantilever to tip lengths ratio, LH . 
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Fig. 8. Vibration sensitivity due to normal contact stiffness, nS , of first mode as a function  

of n  and the cantilever to tip lengths ratio, LH . 

 
Fig. 9. Vibration sensitivity due to lateral contact stiffness, lS , of first mode as a function  

of l  and the cantilever to tip lengths ratio, LH . 

 
4. Conclusions 
 
In this paper, the effects of tip length and normal and lateral contact stiffnesses on 

resonant frequency and the modal sensitivities of an AFM cantilever have been analyzed. 
According to the analysis, the results showed that with increasing normal and lateral contact 
stiffnesses, the resonant frequency increases until it finally reaches a constant value at very high 
values of contact stiffnesses. In addition, in comparison with the values of normal contact stiffness, 
frequency shift, due to the tip–sample interaction, occurs in lower values of lateral contact 
stiffness. It was also shown that in the low values of contact stiffnesses, the lower-order vibration 
modes are more sensitive than the higher-order modes. The situation is completely reversed in 
very high contact stiffnesses. Furthermore, the resonant frequencies are more sensitive to the 
variation of lateral contact stiffness with respect to the variation of normal contact stiffness. The 
results also indicate that for various lateral contact stiffness, increasing the cantilever to tip lengths 
ratio has little effects on the dimensionless sensitivity and resonance frequency of first mode. 



1115 
 

Whereas increasing the cantilever to tip lengths ratio increases the resonance frequency when the 
normal contact stiffness, become greater. Besides, at low and intermediate normal contact 
stiffnesses with the increase of the cantilever to tip lengths ratio, the dimensionless sensitivity 
increases. But at very high normal contact stiffness, increasing the cantilever to tip lengths ratio 
leads to decreasing the dimensionless sensitivity. 
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