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Frequency analysis and modal sensitivity of an atomic force microscope (AFM) cantilever
is presented in this paper. Closed-form expressions for frequency equation and sensitivity
of vibration modes are derived for the tip-cantilever system as the cantilever undergoes
coupled lateral-vertical bending with torsional vibration. In this work, the effects of the
sample surface contact stiffness and the cantilever to tip lengths ratio on resonant
frequencies and sensitivities are assessed. The results show that the resonant frequency is
constant in low and high values of the normal and lateral contact stiffnesses and there is a
shift of frequency in a specific value of stiffness. Also, in comparison with the values of
normal contact stiffness, frequency shift, due to the tip—sample interaction, occurs in lower
values of lateral contact stiffness. In the low values of contact stiffnesses, the lower-order
vibration modes are more sensitive than the higher-order modes. The situation is
completely reversed in very high contact stiffnesses. In addition the resonant frequencies
are more sensitive to the variation of lateral contact stiffness with respect to the variation
of normal contact stiffness.
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1. Introduction

The AFM was invented in 1986 by Binnig, Quate and Gerber [1]. The AFM relies on a
scanning technique to produce very high resolution, 3-D images of sample surfaces. The AFM
measures ultra-small forces (less than 1 nN) that exist between the AFM tip surface and a sample
surface. These small forces are measured by observing the motion of a very flexible cantilever
beam with an ultra-small mass [2]. The deflection of the cantilever is measured by an array of
photodiodes that receives the reflected laser beam from the top surface of the cantilever. These
data collection can be used to determine some important characteristics of the sample surface such
as friction, visco-elasticity, surface topography and many other mechanical properties. AFMs can
be used to study surfaces, whether they are electrically conductive or insulating.

The principal modes of operation for an AFM are static mode and dynamic mode. In static
mode, the cantilever is dragged across the surface of the sample and the contours of the surface are
calculated directly using the deflection of the cantilever. In the dynamic mode, the cantilever is
externally oscillated at or close to its fundamental resonance frequency by its holder or the sample.
The oscillation amplitude, phase and resonance frequency are changed by the interaction force
between the tip and the surface. These changes in the vibration parameters with respect to the
external reference oscillation are used to reveal information about the surface properties of
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samples. Compared to static AFM, dynamic AFM can provide a better signal-to-noise ratio and
higher resolution in measurement of material and surface properties [3]. Three types of dynamic
modes of AFM can be categorized in terms of the cantilever deflection and excitation mode. They
are: contact mode, non-contact mode, and tapping mode (TM); torsional resonance (TR) mode;
and lateral excitation (LE) mode. In contact mode, non-contact mode, and TM, generally the
cantilever is excited by the vertical harmonic motion of its holder. In TR mode, two piezoelectric
elements are attached to the cantilever holder and vibrate out-of-phase to drive the cantilever into
torsional oscillation. In LE mode, the cantilever is driven by the lateral motion of the sample
through tip—sample interaction [4].

In a series of works, Bhushan et al. [3-6] have developed the analytical and numerical
models for dynamic simulation of AFM cantilevers at different dynamic modes with and without
tip—sample interaction. Song et al [4] was developed the 3D Finite Element beam model of tip—
cantilever systems for numerical simulation of free and surface-coupled dynamics of tip—cantilever
system in various dynamic modes of AFM.

The imaging rate and contrast of topographic images can be influenced by the resonant
frequency and modal sensitivity, respectively. Therefore, the study of the resonant frequency and
the sensitivity of an AFM cantilever are significant and have been investigated by many
researchers. Turner and Wiehn [7] have studied the sensitivities of the flexural and torsional modes
for AFM cantilevers and derived a closed-form expression for cantilevers with constant cross
sections. They have developed an approximate solution for cantilevers with other shapes using the
method of Rayleigh—Ritz. They found that the shape of the cantilever can considerably affect the
modal sensitivity. Chang [8] have studied the sensitivity of flexural vibration modes for the
rectangular cantilever of an AFM and obtained a closed-form expression by taking into account
the cantilever slope. He perceived that increase of the cantilever slope apparently decreases the
sensitivity at low contact stiffness. Chang et al. [9] analyzed the interactive damping effect
occurring between the cantilever tip and sample surface on the sensitivity of flexural and torsional
vibration modes of AFM rectangular cantilever. They derived a closed-form expression for the
frequency equation and flexural and torsional sensitivity. They observed that sensitivity of flexural
and torsional of first mode decreased with increasing normal and lateral interactive damping when
the normal and lateral contact stiffness was low. Hsu et al. [10] studied the flexural vibration for an
AFM cantilever using the Timoshenko beam theory and presented a closed-form expression for the
frequencies of vibration modes. They demonstrated that the Timoshenko beam theory is able to
predict the frequencies of flexural vibration of the higher modes with higher contact stiffness.
Without considering vertical bending, Lee et al. [11] investigated the influence of the contact
stiffness and the cantilever to tip lengths ratio on the resonant frequency and the sensitivity of
lateral vibration modes. In their study, the cantilever can vibrate in a combination of torsion and
lateral bending modes. Kahrobaiyan et al. [12] studied resonant frequencies and flexural
sensitivities of an AFM with assembled cantilever probe (ACP). They assessed the effects of the
sample surface contact stiffness and some geometrical parameters on both flexural and torsional
resonant frequencies and sensitivities.

Generally, a vibrating cantilever has four uncoupled deflection: namely vertical bending,
lateral bending, torsion and extension. For a rectangular cantilever, the torsional and lateral
stiffness are nearly two and the extension stiffness is four to five orders of magnitude higher than
the vertical stiffness. Thus in this paper, the displacement component that is related to the
extension, can be neglected.

In contact mode, non-contact mode and TM, vertical bending dominates the deflection of
the cantilever, whereas in TR and LE modes the deflection of the cantilever is in fact a
combination of torsion and lateral bending. These couplings between the vertical bending, lateral
bending and torsion are generally ignored in the literature for the sake of simplicity. Hence, a
model that can consider all the couplings is very desirable. In this paper, by considering the
coupling of lateral-vertical bending with torsional vibration (flexural-torsional), the resonant
frequencies and the modal sensitivities analyses are carried out using an analytical method. The
flexural-torsional coupling is due to the presence of the tip—sample interaction. Effects of normal
and lateral contact stiffnesses and the cantilever to tip lengths ratio on the natural frequencies and
the modal sensitivities of the system will be presented.
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2. Analysis
2.1. Basic equation

Fig.1 shows the schematic diagram of an AFM cantilever in contact with a sample. The
deflection of the cantilever is measured by an array of photodiodes that receives the reflected laser
beam from the top surface of the cantilever. In this paper, the deflection is resolved to a rotation
and two displacements. @(X,t)is the rotation angle around the X -axis, W ( X,t)is the vertical

displacement along the Z -axis, V(X,t) is the lateral displacement along the Y -axis and

extension along the X -axis in comparison with the other displacement components can be
neglected. We have assumed that the AFM cantilever is parallel to the sample surface and tip is
located at the end of the cantilever. To analyze the cantilever response, tip—sample interaction
needs to be established first. Under small deflection, the tip—sample interaction forces in normal

and tangential directions are described by three linear springs K, ,K, and K, respectively, which

act at the end of the AFM tip. Usually, it can be assumed that K, = K, [4]. This may be because

of macroscopic surface properties which are essentially the same in all tangential directions. A
probe in AFM can be modeled as a three-dimensional beam with clamped—free boundary
conditions and the tip is represented by a rigid bar. As shown in Fig 1, the probe has a cross
section with width D, thickness h, length L and tip length H. The lateral tip—sample interaction
exerts a torque and a lateral force on the cantilever, which causes the torsional and lateral bending
vibration. The normal tip-sample interaction exerts a normal force on the cantilever which causes
vertical bending. Longitudinal tip—sample interaction exerts a torque and a longitudinal force on
the cantilever, which cause the extension and vertical bending vibration. But we assumed that the
extension is neglected.

Laser diode
=

z l ’ Photo diode
Mirror

1 :
Focusing lens
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Tip
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Fig. 1. Schematic diagram of an AFM tip—cantilever undergoing vertical bending, lateral
bending and torsion. The tip-sample interaction forces are modeled by three linear springs

K, K, and K,.

Therefore, the linear differential equations of motion for the vertical bending, lateral
bending and torsional vibration of an Euler-Bernoulli beam are [5,13]
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where E and G are Young’s modulus and shear modulus, o is the mass density, A is the cross-

El 0 2)

section area, J is the torsional constant, I, is the moment of inertia about the Y axis, I, is the
moment of inertia about the Z axis and I, is the polar area moment of the inertia. For a cantilever

with a rectangular cross section, A=Dh, | = Dh’/12, I, =hD*/12, |, =(Dh’+ hD*)/12
and J ~(1/3)Dh*(1-0.63(h/D) +0.052(h/D)’). The determination of the characteristics

equation requires four vertical-bending-related, four lateral-bending-related and two torsional-
related boundary conditions. The ten boundary conditions with considering interaction are

W (0,t) =0 (4.2)
wW@O.n _, (4.b)
oX |
2
[, PUED o LD w0
3
El, % = K W(L,1) (4.d)
V(0,t) =0 (d.e)
V(0,1
x ! 0
oV (L,t
El, % =0 (4.g)
3
Eh%: K, (Hg(L, 1) +V (L, 1)) (4.h)
$(0,H)=0 4
GJ%Z_KIH(W(L,UW(L,U) (4)

At the built-in end the deflections and the slopes of the beam must be zero. Thus, if the end
X =0 is assumed to be built-in, then the boundary conditions given by Egs. (4.a), (4.€) and (4.b),
(4.f) correspond to conditions of zero displacements and slopes, respectively. The boundary
conditions given by Eq. (4.1) correspond to zero twist angle. At the free end, the moments and the
shear forces of the beam must be zero. Thus, if the end X =L is assumed to be free, then
boundary conditions given by Egs. (4.c), (4.d), (4.g), (4.h) and (4.j) correspond to the moments

balanced and forces balanced between the end beam with the linear springs K, K, and K,. For
harmonic vibrations the displacements and torsional rotation can be expressed in the form of

W (X,t) =w(X)e" V(X,t) =v(X)e'™ B(X, 1) = p(X)e' (5)
Where o is the angular frequency of vibration, the dimensionless parameters are defined as

X W \Y (6.2)
W v
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Utilizing these dimensionless parameters and substituting Eq. (5) into Egs. (1) to (4), the coupled
equations and the associated boundary conditions can be simplified to the following dimensionless
differential equations and boundary conditions

d4W(X)_ 4 _
S W) =0 2
dvoy B
e a’'v(X)=0 ®)
2
204 P =0 ®
W(0) = 0 (10.2)
dw(0) ~0 (10.b)
dx
d’w(l) _ , dw(l)

dx> pis dx 1o

3
d (;/)v(gL) _ B w(L) (10.d)
v(0) = 0 (10.e)
dv(0) _

0 _g (10.9)
d*v(L

OIX(2 ) _o (10.g)
dv(L) _ g ( 1 )

o b (PP e
2(0) =0 (10.9)
do(L) ﬂ.((p(L) +1V(L)) (10,)

dx b

2.2. Solution
The general solutions of Egs. (7) to (9) can be expressed as

W(x) = A sin(3x) + A, cos(X) + A, sinh(yX) + A, cosh(yx) (11)
V(x) = B, sin(ax) + B, cos(ax) + B, sinh(ax) + B, cosh(ax) (12)

@(x) = C, sin(px) + C, cos(px) (13)
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Where A..A,, B,..B, and C,C, are the constants to be determined from the boundary

conditions. By substituting the Eqs. (11) to (13) into the boundary conditions, (10), a characteristic
equation can be obtained to determine the resonance frequencies. This leads to the following
characteristic equation

Cp. oo )=z ' (85 + 1 Jeost L)+ (5, + sy Jsin) - 2(p, s + )

cos(7L))eosh(L) + (8,45 +7* Jeos* (L)~ 27(8, — £57* Jsinh(pL) cos(iL) +

(sinz(;/L) - sinhz(yl_))(ﬂnﬂls +y ))((osz cosh’(al) + 2(053b2 cos(al)+ f,q sin(aL)) (14)
cosh(al) +a’b* cos*(al) — 2 B,q cos(al)sinh(al) + a’b’ p cos(pL)

(sin” (L) —sinh?(aL) )+ a0 B, sin( pL)(2(1 + cosh(al ) cos(al)))

The roots of Eq. (14) are the eigenvalue or natural frequencies of the system. The resonant
frequency based on the dimensionless parameter p> = pl o Lo’ / GJ in Eq. (6.b) is obtained, and

is given as

_ P GJ
2 ,olpL2

(15)

The sensitivity of the probe can be calculated from the frequency, which can be measured.
The sensitivity is defined as the change in the vibration frequency of a mode with respect to the
change in normal or lateral contact stiffness [7,8]. Once differentiation of Eq. (14) with respect to

P, implies that

dp __6C/8ﬁn
dg,  oC/op (16)

The relationship between frequency f and normal contact stiffness, £, can be expressed as

of et ap _ 1[G ap a7
op, opop, 2« pIpL2 ap,

The dimensionless form of the sensitivity due to normal contact stiffness is given by

_ dtjep,_op (1s)
" ()27)JGI/pl 2 OB,

Thus,
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S, =—|(Bscosh® (L) + 2(y sin(L) - Bs cos(7L))cosh(IL) + 5 cos* (L) — 2y sinh(3L) cos(sL)
+ Bs(sin’ (7L) —sinh” (L) ) (p cos(pL)(@*0? cosh? (al) + 2(a*b? cos(al) + B sin(al) Jcosh(al)
+a’b cos’ (al) — 24 cos(al ) sinh(al) + a0’ (sin® (aL) — sinh’ () )+ B,a’b? sin(pL)
(2(1 +cos(al) cosh(aL))))]/[((,b’n,b’,S +y )cosh2 L)+ (2(}/4 - 5.5 S)cos(yL) + Zy(ﬂ, sy’ + 3, )sin(yl_))
cosh(L) + (B, 85 + 7 Jeos> (1) — 2B, — Bsy* Jeos(pL) sinh(L)+ (" + B8, 33 )(sin® (L) —sinh® (L))
((?0?(1+ B L)cosh (aL) + (220 (1+ B L )cos(al) + 23 sin(al) Jcosh(al ) + &*b* (1 + B, L)cos® (o)
—28,qcos(al)sinh(al) + &'b?(sin’ (al) — sinh () ))cos(pL) — (a*b? cosh® (al)
+ 2<a3 b* cos(al) 4 sin(aL))cosh(aL) +a’b’ cos’(al) —28,q cos(al ) sinh(al.)
+ a0 (sin’(al) - sinh?(al) )L sin( pL) )|

(19)

The sensitivity due to lateral contact stiffness is derived in the same way as the sensitivity due to
normal contact stiffness. Consequently, differentiation of Eq. (14) with respect to £, implies that

dp  0C/op,
dg,  oC/ap
Therefore, the sensitivity due to lateral contact stiffness is given by
S, = —{((e* (2 py(sin(al) cosh(al) — cos(al) sinh(al ) Jeos( pL) + 2a*y*b? sin( pL)(1 + cos(al)

cosh(al))(B, B+ " Jeosh> (L) + (2(y* - B, Bs)cosL) + 2¢( 3, + Bisy* Jsin(sL))
cosh(JL) + (ﬁnﬂ,s +y* )cos2 (L) - 2}/(ﬂn - Bsy’ )sinh(ny) cos(jL) + a’b’ cos(aL))cosh(aL)
+a’b” cos’(al) — 2 B,q cos(al)sinh(al) + a’b? (sin2 (al) —sinh? (aL)))cos( pL)

+20°b? B, sin(pL)(1 + cos(al) cosh(al) )y (8, s cosh® (L) + 2(sy° sin(3L) — 3, cos(sL))
cosh(JL) + B,s cos’ (3) + 25 cos(yL) sinh(L) + 3, s(sin> (L) — sinh® L) )]/ [e* ((o*b
cosh’(al) + Z(ﬂlq sin(al) + a’b? cos(aL))cosh(aL) +a’b* cos’ (al) —23,qcos(al)
sinh(al) + &*b?(sin?(aL) - sinh? (aL) L sin( pL) + &*b> B, L cos( pL)

(2(1+ cos(aL) cosh(aL))))y* (8,8, + 7* )eosh® (L) + (2(y* - B, B 5 )cos(L)

+2ysin(L)(8, + 57 )]

(20)

2]
From the above equations, the sensitivities due to normal and lateral contact stiffness as
function of dimensionless parameters for each mode can be calculated.

3. Numerical Results and discussions

In this section, based on the presented analytical method, the frequency analysis and
modal sensitivities of an AFM cantilever are focused. Numerical results are presented to reveal the
influence of the normal and lateral contact stiffness and tip length on the coupled frequencies and
modal sensitivities of the AFM cantilever. To validate the solution procedure, for the case of

B =a=p=0 and )L = y the characteristics equation (14) can be simplified as

C(}/, B, ) = ;/3(cos ycosh y + 1) - B, (sinh ¥ cos y —sin y cosh ;/) (22)
The above frequency equation is the same as the form obtained by Turner and Wiehn [5]. While
for the case of f, =y =0, aL =« and pL = p the characteristic equation (14) can be reduced
to
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C(p,,)=(pcos p+ S sin p)(1+cosacosha )+ #ﬁ, pg cos p(cosh e sin @—sinh @ cos @)
a
(23)

As can be seen, this is the same as the frequency equation obtained by Lee and Chang
[11].

The resonant frequency and modal sensitivities were expressed as functions of geometrical
and mechanical properties of probe and contact stiffnesses. The values of the geometrical and
mechanical properties of this case-study probe are considered as E =150 GPa, G =64 GPa,
p=2300 kg/m’, L=200 pm, D=40 ym, h=5 ym, H =15 pm [11]. The lateral contact

stiffness can be assumed as K, =0.9K  [14]. The energy dissipation due to the tip-sample

interaction is neglected. Once the normal and lateral contact stiffnesses are given, the natural
frequencies and modal sensitivities of the tip—cantilever system under linear interactions tip—
sample are obtained by solving the equations (14), (19) and (21). Each mode has a different
resonant frequency and sensitivity to variations in contact stiffnesses. In the forthcoming figures,
the modal sensitivities and resonant frequency of the first five vibration modes and the variations
in the sensitivities and natural frequency of first mode at various tip lengths of the system will be
shown. The resonant frequency of the first five vibration modes of the cantilever as a function of

dimensionless normal and lateral contact stiffnesses, £, and f, are illustrated in Fig.2. and Fig.3,

respectively. It can be observed that as 3, and f, increase, the resonant frequency commences

from a constant value at low values of normal and lateral contact stiffnesses then increases until it
finally reaches another constant value at very high values of normal and lateral contact stiffnesses.
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90 - B
—E&— mode 3

—%— mode 4
80F —*— mode 5 3

Resonant frequency,  [GHz]

0 11 I RN L 1 1y 1111 1 L IR ERIT] 11
10 10 10 10* 10° 10° 10 10 10
Normal contact stiffness, Bn

Fig. 2. The cantilever’s first five resonant frequencies as a function of normal contact stiffness,
L., for an AFM cantilever.
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Fig. 3. The cantilever’s first five resonant frequencies as a function of lateral contact stiffness,
p, . for an AFM cantilever.

The modal sensitivities of the first five vibration modes as a function of dimensionless
normal and lateral contact stiffnesses, f, and f, are shown in Fig. 4 and Fig.5, respectively. It

can be observed that as 3, and f, increase, the modal sensitivities of all the vibration modes

decreased. Moreover, for low normal and lateral contact stiffnesses, the low-order modes are more
sensitive than high-order modes and the first mode is the most sensitive. Whereas the normal and
lateral contact stiffnesses become larger, it can be noted that high-order modes become more
sensitive. Comparing Fig.2 with Fig. 3, it can be seen that in comparison with the values of normal
contact stiffness, frequency shift, due to the tip—sample interaction, occurs in lower values of
lateral contact stiffness. Comparing Fig.4 with Fig. 5, it can be seen that the resonant frequencies
are more sensitive to the variation of lateral contact stiffness with respect to the variation of
normal contact stiffness.

—+— mode 1
—*— mode 2

Dimensionless sensitivity, S

10‘5 1 Il Il il Il 1 Il
10 10 10’ 1’ 10° 10 10’ 10 10

Normal contact stiffness, Bn
Fig. 4. Variation of sensitivity due to normal contact stiffness, S, , as a function of
P, for an AFM cantilever for the first five modes.
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Fig. 5. Variation of sensitivity due to lateral contact stiffness, S,, as a function of 3, for an AFM
cantilever for the first five modes.

The tip length, H , can change sensitivity and the resonance frequency by producing a
force and moment at the free end of the cantilever. Therefore, it is of interest to learn how the tip
length affects modal sensitivities and resonant frequency of first mode. The resonant frequency of

first mode of cantilever as a function of the normal contact stiffness, S, and the cantilever to tip
lengths ratio, H/L , is shown in Fig. 6. This figure shows that increasing the tip length leads to
increasing the resonance frequency when the normal contact stiffness, f,, becomes large. The
resonant frequency and dimensionless sensitivity of first mode of cantilever as functions of the
lateral contact stiffness, [, and the cantilever to tip lengths ratio, H / L, are shown in Fig. 7 and
Fig. 9, respectively. This figures show that for various lateral contact stiffness, /3, increasing the

cantilever to tip lengths ratio has little effects on the dimensionless sensitivity and resonance
frequency. Dimensionless sensitivity of first mode of cantilever as a function of the normal contact
stiffness, f3,, and the cantilever to tip lengths ratio, H/L , is depicted in Fig. 8. From this figure,
it can be seen that at low and intermediate normal contact stiffnesses with the increase of the
cantilever to tip lengths ratio, the dimensionless sensitivity increases. But at very high normal
contact stiffness, [, increasing the tip length decreases the dimensionless sensitivity.
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Fig. 6. Resonant frequency of first mode as a function of the normal contact stiffness, /3,

H/L.

and the cantilever to tip lengths ratio,
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Fig. 7. Resonant frequency of first mode as a function of the lateral contact stiffness, /3, ,

and the cantilever to tip lengths ratio, H/L .
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Sensitivity of mode 1, 8

Fig. 8. Vibration sensitivity due to normal contact stiffness, S, , of first mode as a function
of S, and the cantilever to tip lengths ratio, H/L .

Sensitivity of mode 1, §;

Fig. 9. Vibration sensitivity due to lateral contact stiffness, S, , of first mode as a function

of S, and the cantilever to tip lengths ratio, H /L .
4. Conclusions

In this paper, the effects of tip length and normal and lateral contact stiffnesses on
resonant frequency and the modal sensitivities of an AFM cantilever have been analyzed.
According to the analysis, the results showed that with increasing normal and lateral contact
stiffnesses, the resonant frequency increases until it finally reaches a constant value at very high
values of contact stiffnesses. In addition, in comparison with the values of normal contact stiffness,
frequency shift, due to the tip—sample interaction, occurs in lower values of lateral contact
stiffness. It was also shown that in the low values of contact stiffnesses, the lower-order vibration
modes are more sensitive than the higher-order modes. The situation is completely reversed in
very high contact stiffnesses. Furthermore, the resonant frequencies are more sensitive to the
variation of lateral contact stiffness with respect to the variation of normal contact stiffness. The
results also indicate that for various lateral contact stiffness, increasing the cantilever to tip lengths
ratio has little effects on the dimensionless sensitivity and resonance frequency of first mode.
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Whereas increasing the cantilever to tip lengths ratio increases the resonance frequency when the
normal contact stiffness, become greater. Besides, at low and intermediate normal contact
stiffnesses with the increase of the cantilever to tip lengths ratio, the dimensionless sensitivity
increases. But at very high normal contact stiffness, increasing the cantilever to tip lengths ratio
leads to decreasing the dimensionless sensitivity.
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