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In this study silver nanoparticles (Ag-NPs) are biosynthesized from silver nitrate aqueous 
solution through a simple and eco-friendly route using Curcuma longa (C. longa) tuber 
powder extracts which acted as a reductant and stabilizer simultaneously. 
Characterizations of nanoparticles are done using X-ray diffraction (XRD) and 
transmission electron microscopy (TEM). We present an artificial neural network (ANN) 
approach is used to model the size of Ag-NPs as a function of the volume of C. Longa 
extraction, temperature of reaction, stirring time and volume of AgNO3. The suitable ANN 
model is found to be a network with two layers that first layer has 10 neurons and second 
layer has 1 neuron. This model is capable for predicting the size of Ag-NPs synthesized by 
green method for a wide range of conditions with a mean absolute error of less than 0.01 
and a regression of about 0.99. Based on the presented model it is possible to design an 
effective green method for obtain Ag-NPs, while minimum received materials are used 
and minimum size of Ag-NPs will be obtained. Also simulation of the process is 
performed using ANN media. According to the model’s results, the volume of C. Longa 
extraction, temperature of reaction, and volume of AgNO3 about 18 mL, 30 °C and 2 mL 
are chosen as the optimum size of Ag-NPs, respectively. Results obtained reveal the 
reliability and good predicatively of neural network model for the prediction of the size of 
Ag-NPs in green method. 
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1. Introduction 
 
The “green synthesis” of metal nanoparticles receives greater attention due to their 

unusual optical, chemical, photo-chemical and electronic properties [1]. Metal nanoparticles 
especially the noble metals; have mainly been studied because of their strong optical absorption in 
the visible region caused by the collective excitation of the free electron gas [2].  

Among noble metal nanoparticles, silver nanoparticles have wide area of interest as they 
have large number of applications such as in non-linear optics, spectrally selective coating for 
solar energy absorption, biolabelling, intercalation materials for electrical batteries as optical 
receptors, catalyst in chemical reactions and as  antibacterial  capacities [3]. Silver nanoparticles 
(Ag-NPs) have definite properties. This may perhaps have numerous applications in the fields of 
dentistry, clothing, catalysis, mirrors, optics, photography, electronics and food industries [4].          
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Because of such broad variety of applications, wide ranges of different preparation 
methods have been developed. However, the developing methods of Ag-NPs preparation, must 
give preference to control size of Ag-NPs. Therefore, nanosilver with small particle size and 
devoid of aggregation between particles is favorable in this purpose. 

There are several ways to reduce Ag+ for instance, application of physical methods using 
of γ-rays, UV-irradiation, ultrasonic irradiation, microwave irradiation, heating and 
electrochemical reduction [5‒7], application of reducing chemicals, such as hydrazine, sodium 
borohydride [8‒12], polyethylene glycerol [13], N,N-dimethyl formamide [14], glucose [15], 
ethylene glycol [16], formaldehyde [17], sodium in liquid ammonia, etc [18]. 

However, there is still need for a more economic, commercially viable as well 
environmentally green synthesis route to synthesize Ag-NPs. The green synthesis of Ag-NPs 
involves three main steps, which must be evaluated based on green chemistry perspectives, 
including selection of solvent medium, reducing agent and nontoxic stabilizers for Ag-NPs [3]. 
The biosynthesis of nanoparticles, which represents a connection between biotechnology and 
nanotechnology, has received increasing consideration due to the growing need to develop 
environmentally friendly technologies for material syntheses. The search for appropriate 
biomaterials for the biosynthesis of nanoparticles continues through many different synthetic 
methods. The biosynthetic method using plant extracts has received more attention than chemical 
and physical methods and even than the use of microbes. The method is suitable for nanoscale 
metal synthesis due to the absence of any requirement to maintain an aseptic environment [19]. 
The possibility of using plant materials for the synthesis of nanoscale metals was reported initially 
by Gardea-Torresdey et al [20]. Later, the bioreduction of various metals to nanosize materials of 
various shapes, capable of meeting the requirements of diverse industrial applications, was 
extensively studied [21]. In continuation, we have demonstrated the prospect of using Vitex 
Negundo L. leaf and Callicarpa manigayi stem bark methanolic extracts and Curcuma longa tuber 
powder water extract for the synthesis of the Ag-NPs at ambient conditions, without any additive 
protecting nanoparticles from aggregating, template shaping nanoparticles or accelerants [22‒24, 
19]. 

Artificial neural network (ANN) is a powerful and efficient simulation tool for managing 
the engineering regression-based processes and also for classification of problems specially, when 
the involving parameters and their corresponding relationships are very complicated, non-linear 
and multi-dimensional [25]. The artificial neural networks (ANNs) allow one to estimate 
relationships between one or several input variables called independent variables or descriptors 
and one or several output variables called dependent variables or responses. Information in an 
ANN is distributed among multiple cells (nodes) and connections between the cells (weights) [26]. 
Also can say ANN is a computer program capable of learning from examples through iteration, 
without requiring a prior knowledge of the relationships between process parameters. Major 
benefits in using ANN are excellent management of uncertainties, noisy data and non-linear 
relationships [27]. Neural network modelling has generated increasing acceptance and is an 
interesting method in the estimation, prediction and control of bioprocesses [28].  

Lately, ANNs have been used to study a wide variety of chemical problems such as 
spectral analysis [26], prediction of dielectric constants [29], and mass spectral search [30], and 
also in recent years, ANN have been introduced in nanotechnology applications as techniques to 
model data showing non-linear relationships and or estimation of particle size in variety nano 
particle samples [30‒32]. The main aim of this investigation is using artificial neural network for 
prediction of size of Ag-NPs prepared by green method. In this study, an artificial neural network 
method using the back-propagation algorithm is proposed for the prediction of size of nano silver 
under different operational conditions. 

 
 
2. Experimental Section 
 
2.1 Materials 
The C. longa tuber is purchased from a local market in Malaysia. AgNO3 (99.98%) is used 

as a silver precursor, and is provided by Merck (Frankfurter, Germany). HNO3 (70%) and HCl 
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(37%) are also obtained from Sigma-Aldrich (St Louis, MO, USA). All reagents in this effort are 
analytical grade and are used as received without further purification. All solutions are freshly 
prepared using double distilled water and kept in the dark to avoid any photochemical reactions. 
All glassware used in experimental procedures are cleaned in a fresh solution of HNO3/HCl (3:1, 
v/v), washed thoroughly with double distilled water, and dried before use. 

 
2.2 Extraction Preparation 
The C. longa tubers are washed to remove the adhering mud particles and possible 

impurities. Later it is dried under sunlight for a week to completely remove the moisture. The 
tubers are cut into small pieces, powdered in a mixer and then sieved using a 20 mesh sieve to get 
uniform size range. The final sieved powder is used for all further studies. For the production of 
extract, 0.1 g of C. longa tuber powder is added to a 100 mL Erlenmeyer flask with 20 mL sterile 
distilled water and then mix for 4 h in room temperature. 

 
2.3 Synthesis of Ag-NPs in C. longa Suspension 
Briefly, water extract of C. longa tubers powder are added to the different volumes of Ag 

NO3 (1 × 10−3 M) then mixed reactants at different stirring time and reaction temperature (Table 
1). Ag-NPs are gradually obtained during the incubation period. Throughout the reduction process, 
solutions are kept in the dark to avoid any photochemical reactions. The solutions components are 
purged with nitrogen gas prior to use. Subsequently, reduction proceeded in the presence of 
nitrogen to eliminate oxygen. The obtained colloidal suspensions of Ag-NPs in C. longa are then 
centrifuged at 15000 rpm for 20 min and washed four times to remove silver ion residue. The 
precipitate nanoparticles are then dried overnight at 30 °C under vacuum overnight to obtain the 
Ag/C. longa. 

 
2.4 Characterization Methods and Instruments 
The synthesized Ag/C. longa suspensions are characterized by X-ray diffraction (XRD), 

transmission electron microscopy (TEM). The structures of the Ag-NPs produced are examined by 
X-ray diffraction (XRD-6000, Shimadzu, Japan). The XRD patterns are recorded at a scan speed 
of 4°/min. TEM observations are carried out on a H-7100 electron microscope (Hitachi, Tokyo, 
Japan), and the particle size distributions are determined using the UTHSCSA Image Tool version 
3.00 program.  

 
2.5 Data Set 
In Table 1 is presented the experimental data used for the training of the ANN model. The 

database is randomly divided into three sets: training, validation and testing data. Training 
category is specifically applied to adjust the network weights and errors in the each iteration. 
Validation category is required to modify and optimize the ANN architecture (activation function, 
training function and number of hidden layers), and adjust the number of neurons for hidden layer. 
A testing date sets is supposed to be the new data that evaluate the effectiveness and efficiency of 
the trained network [33]. Also the predicted particle size is compared to the observed particle size 
and the difference between the predicted and observed size is stated as particle size error based on 
the difference between these two values. 
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Table 1. Experimental values (training, validation and testing data set), actual and model 
 predicated of size of Ag-NPs. 

 

No
. 

Volume 
of C. 
longa 

Extract 
(mL) 

Temperat
ure (°C) 

Stirrin
g time 

(h) 

Volume of 
AgNO3 
(mL) 

Ag-NPs 
Particle 

Size (nm) 
(Actual) 

Ag-NPs 
Particle 

Size (nm) 
 (Predict) 

Particle 
Size Error 

Actual-
Predict 

    Training Set    
1 20 40 48 5 5.52 5.5243 -0.0043 
2 20 50 48 10 6.08 6.0824 -0.0024 
3 20 70 24 20 7.35 7.3293 0.0207 
4 10 25 24 1 8.18 8.4098 -0.2298 
5 10 30 24 2 8.41 8.4803 -0.0703 
6 10 60 12 15 9.35 9.3185 0.0315 
7 10 70 12 20 9.78 9.7753 0.0047 
8 5 25 24 1 10.46 10.5446 -0.0846 
9 5 40 12 5 10.86 10.9758 -0.1158 

10 5 70 6 20 11.82 11.8955 -0.0755 
11 2 25 6 1 12.37 12.6080 -0.2380 
12 2 30 6 2 12.49 12.6792 -0.1892 
13 2 40 3 5 12.73 12.7863 -0.0563 
14 2 50 3 10 12.96 12.9687 -0.0087 
15 2 70 3 20 13.78 13.9291 -0.1491 
16 1 25 3 1 14.36 14.5713 -0.2113 
17 1 30 1 2 14.55 14.6982 -0.1482 
18 1 40 1 5 14.65 14.6805 -0.0305 
19 1 50 1 10 14.85 14.8393 0.0107 
20 1 70 1 20 15.32 15.5211 -0.2011 

Validation set 
21 20 30 48 2 5.18 5.5761 -0.3961 
22 10 50 24 10 9.11 9.2364 -0.1264 
23 5 60 6 15 11.69 10.8051 0.8849 
24 2 60 3 15 13.47 13.0482 0.4218 
25 1 60 1 15 14.93 15.0683 -0.1383 

 Test set  
26 20 25 24 1 4.90 5.3281 -0.4181 
27 20 60 48 15 6.67 6.7278 -0.0578 
28 10 40 24 5 8.85 9.1156 -0.2656 
29 5 30 12 2 10.74 10.6969 0.0431 
30 5 50 6 10 11.23 11.2346 -0.0046 
 

2.6 ANN Description 
In Fig. 1. is shown a diagram of a typical MLP neural network with one hidden layer 

structure of proposed ANN. 
The input to the node l	in the hidden layer is given by: 
 

∂୪ ൌ ∑ ሺx୧w୧୪ሻ ൅ θ୪
୯
୧ୀଵ 								l ൌ 1,2, … , s                                                            (1) 

 
Each neuron consists of a transfer function expressing an internal activation level. The 

output from a neuron is determined by transforming its input using a suitable transfer function 
[34]. Generally, the transfer functions for function approximation (regression) are sigmoidal 
function, hyperbolic tangent and linear function [35]. The most popular transfer function for a 
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nonlinear relationship is the sigmoidal function [36,37]. The output from l	th neuron of the hidden 
layer is given by: 
 

O୪ ൌ fሺ∂୪ሻ																		l=1, 2,…, s                                                      (2) 
 
In Equations (1) and (2), q is the number of neurons in the input layer, s is the number of neurons 
in the hidden layer,	θ୪ is the bias term, w is the weighting factor and f is the activation function of 
the hidden layer such as hyperbolic-tangent transfer function [38]. The output of the	jth neuron in 
the output layer is given by: 
 

Y୨ ൌ ∑ ൫O୧w୧୨൯ ൅ b୨										j ൌ 1,2, … ,m	ୱ
୧ୀଵ                                                     (3) 

 
Where	ݓ is the weighting factor, ܾ is the bias term and ݉ is the number of neurons in the output 
layers. 
 

 
Fig. 1. Schematic diagram of neural network model. 

 
The values of the interconnection weights are determined by the training or learning 

process using a set of data. The aim is to find the value of the weight that minimizes the error [35]. 
A general measure for evaluation of predicts ability ANN models is the Mean Square Error 
(MSE): 
 

MSE ൌ
ଵ

୰
∑ ൫x୮୧ െ xୟ୧൯

ଶ୰
୧ୀଵ                                                                    (4) 

 
Where r is the number of points, x୮୧ is the predicted value obtained from the neural 

network model, xୟ୧	is the actual value. The coefficient of determination, R, of the linear regression 
line between the predicted values from the neural network model and the desired output was also 
used as a measure of performance [27]. The closer the R value is to 1, the better the model fits to 
the actual data [39]. 
 

R ൌ ቆ1 െ
∑ ൫୶౦౟ି୶౗౟൯

మ౨
౟సభ

∑ ሺ୶౗౟ି୶ౣሻమ
౨
౟సభ

ቇ

ଵ
ଶൗ

	                                               (5) 
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Where r is the number of points, x୮୧		is the predicted value obtained from the neural 
network model, xୟ୧	is the actual value, and		x୫ is the average of the actual values. The network 
having minimum MSE, maximum R is considered as the best neural network model [40].  

 
 
3. Results and discussion 
 
3.1 Powder X-ray Diffraction 
 
The Fig. 2. shows the X-ray diffraction (XRD) patterns of vacuum-dried Ag-NPs 

synthesized using 20 mL of C. longa in 1 mL of AgNO3 that mixed for 24 h at 25 °C, respectively. 
The XRD patterns of Ag/C. longa indicated that the structure of Ag-NPs is face-centered cubic 
(fcc). In addition, all the Ag-NPs had a similar diffraction profile and XRD peaks at 2θ of 38.18°, 
44.25°, 64.72°, and 77.40° could be attributed to the 111, 200, 220 and 311 crystallographic planes 
of the face-centered cubic (fcc) silver crystals, respectively [32]. The XRD pattern thus clearly 
illustrated that the Ag-NPs formed in this study are crystalline in nature. The main crystalline 
phase is silver and there is no obvious other phases as impurities are found in the XRD patterns 
(Ag XRD Ref. No. 01-087-0719). 

 

 
Fig. 2. XRD patterns of Ag-NPs synthesized in C. Longa for determination of Ag-NPs. 

 
3.2 Morphologies Study 
TEM images and their corresponding particle size distributions of Ag/C. longa 

suspensions with the different volumes of C. longa extract (5, 10 and 20 mL) are shown in Fig. 3. 
For the TEM study, a drop of the Ag-NPs solutions synthesized by treating AgNO3 aqueous 
solution with different volumes of C. longa were deposited on to a TEM copper grid. After drying, 
the grids are imaged using TEM. The TEM images and their size distributions revealed that, the 
mean diameters and standard deviation of Ag-NPs are about 10.46±5.58, 8.18±3.53 and 4.90±1.42 
nm for 5, 10 and 20 mL (a‒c) of C. longa extract at 25 °C, and after 24 h of stirring reaction time. 
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Fig. 3. TEM images and corresponding size distributions of Ag-NPs in C. longa (5, 10 and 20 mL)  

under 25 °C and after 24 h of stirring reaction time (a‒c). 
 

Fig. 3. (a-c) shows the Ag-NPs are surrounded by the extract of C. longa. The dark points 
in these figures represent the large scale distribution of Ag-NPs. The Ag-NPs surrounded by C. 
longa extract are shown by TEM. The numbers of Ag-NPs counted for TEM images are around 
1006, 1041 and 1065 for 5, 10 and 20 mL for C. longa extract. 

 
3.3 ANN Modeling 
The volume of plant extract, temperature, stirring time, and volume of AgNO3 are used as 

inputs to the network. The output of the model was particle size of nano particle. Numbers of 
hidden layers and number of nodes in each hidden layer plays a significant part in the network 
procedure. It does not have any specific situation or rule but is fundamentally depends upon the 
analyzer’s experience and problem’s nature [41]. Normalizing all the input data to values between 
0 and 1 is the first step of the calculation before using the neural networks. The last step is the 
renormalization of outputs. Former job is for sensitivity increscent and accuracy of network, and 
the goal of the latter is to calculate the actual desired values and real simulation error [33]. Also 
optimization process of ANN contains selection of the parameters related to each function known 
as the bias and weight values of the transfer-function of each neuron in order to maximize the 
regression (R) and minimize the error of MSE of an observing dataset. The first analysis is the 
optimal number of hidden neurons for the model. Therefore the number of hidden neurons varied 
from 1 to 20 in accordance with trustworthy obtained results in training step. Also in hidden layer 
is picked and chosen a hyperbolic-tangent transfer function. The linear activation function is 
similarly applied as the output layer activation function. In this paper, best architecture for the 
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ANN model is selected a two layer feed forward network that input neurons are attached to a layer 
of 10 hidden neurons, which are connected to the output neurons.  

Therefore using the ANN analysis, the optimal configuration of the ANN model is found 
to be 4-10-1. The suggested network is trained with Levenberg–Marquardt (LM) back-propagation 
algorithm. The back-propagation algorithm is utilized in model training. The back-propagation 
algorithm uses the supervised training technique where the network weights and biases are 
initialized randomly at the beginning of the training phase. For a given set of inputs to the network, 
the response to each neuron in the output layer is calculated and compared with the corresponding 
desired output response. The errors associated with desired output response are adjusted in the way 
that reduces these errors in each neuron from the output to the input layer. The error minimization 
process is achieved using gradient descent rule [42]. The LM algorithm [43], is an approximation 
to the Newton method used also for training artificial neural network. The Newton method 
approximates the error of the network with a second order expression, which contrasts to the back-
propagation algorithm that does it with a first order expression. Therefore LM back propagation is 
a network training function that updates weight and bias values according to LM optimization 
[44]. Table 2 shows the values of connection weights (parameters of the model) for the complete 
ANN model trained on the whole datasets. This information allows other researchers to compare 
present ANN models with their own experimental data. 

 
Table 2. Values of connection weights (parameters of the model) for the completed ANN model. 

 

 
Node 

1 
Node 

2 
Node 

3 
Node 

4 
Node 

5 
Node 

6 
Node 

7 
Node 

8 
Node 

9 

Nod
e 

10 

Bias 
2 

Inp
ut 
1 

-
1.6823 

-
2.6397 

2.4590 
-

4.3611 
2.4539 

0.052
5 

-
2.4357 

1.0752 
-

0.0493 
1.18
77 

 

Inp
ut 
2 

0.0242 
-

0.3755 
-

1.0036 
-

0.5187 
1.6785 

-
0.991

2 

-
1.5892 

-
1.2649 

-
0.6639 

1.00
05 

 

Inp
ut 
3 

0.7343 
-

0.2823 
0.0627 0.6445 1.3309 

-
1.554

1 
0.2129 0.0318 

-
0.7304 

-
1.51
36 

 

Inp
ut 
4 

1.1828 0.5438 
-

2.3693 
-

0.7728 
-

0.9676 
0.079

3 
-

0.6098 
2.0588 2.4077 

-
1.22
44 

 

Bias 
1 

2.8607 
-

4.6558 
-

0.4913 
-

1.6012 
0.0745 

0.239
3 

-
0.5033 

2.3933 1.7281 
2.57
84 

 

Out
put 

0.1594 0.8554 0.4302 
-

0.3419 
-

0.6868 

-
0.658

4 

-
0.4632 

-
0.3914 

0.0194 
0.33
67 

0.35
86 

The performances of ANN model on training, validation and testing data sets are evaluated by 
MSE and R. These resulting values are reported in Table 3 and this results show that the predictive 
accuracy of the model is high. 
 
 

Table 3. The performances of ANN model on training, validation and testing data sets. 
 

 Train Validation Test 

MSE 0.0155 0.2305 0.0501 
R 0.9996 0.9920 0.9987 

 
In Fig. 4. is also shown the scatter diagram of predicted values in comparison with actual 

values. It shows that the model prediction fits well with the experimental observations. 
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Fig. 4. The scatter plots of ANN model predicted values in comparison with actual values  

for training, validation, testing and all data sets. 
 

In Fig. 5. is shown the errors histogram of train, validation and test sets. These results 
show errors three data sets is less than 0.86.   

 
Fig. 5. Errors histogram of train, validation and test sets. 

 
 

In Fig. 6. series 1 and 2 respectively show mean values real and simulated our experiments 
andall graphs show that our proposed model can well predict the results of experiment of the 
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biosynthesized method. Also it is indicated in Fig. 6. (a), that size of Ag-NPs in green method 
decreases significantly by increasing volume of C. longa tuber powder. Effects of the reaction 
temperature on the size of Ag-NPs is also investigated. It is indicated in Fig. 6. (b), that size of Ag-
NPs increases significantly by increasing temperature. Based on the current experiments and same 
ANN results, the operative temperature in green method is suggested to be about less than 30 °C. 

 

 
 

Fig. 6. Actual and ANN predicted plating rates for different levels of the parameters:  
volume of Curcuma longa, temperature and volume of AgNO3 (a-c). 

 
Fig. 6. (c) shows the influence of volume of AgNO3 on the size of Ag-NPs, which by 

increasing volume of AgNO3 increases the size of Ag-NPs. Therefore based on the presented 
experiments and the ANN results, the volume of AgNO3 in green method is recommended to be 
about less than 2 mL. Therefore on the based simulated analysis, optimum parameters for 
minimum size of Ag-NPs are, more than 18 mL for volume of C. longa, less than 30 °C for the 
reaction temperature, and less than 2 mL for the volume of AgNO3. The volume of C. longa 
powder and reaction temperature are the most effective parameters on the size of Ag-NPs. 
Implying the empirical model derived from the ANN can be used to sufficiently describe the 
relationship between the independent variables and response. 

 
 
4. Conclusion 
 
In this research, an ANN model for predicting the size of Ag-NPs is offered. The model 

accounts the effect of volume of C. longa tuber powder, temperature, stirring time, and volume of 
AgNO3 on the size of nanoparticle. Based on the obtained results it can be concluded that the LM 
neural network model with 10 neurons in 1 hidden layer will be the very good training algorithm 
and can present a worthy performance for ANN modeling of nano composites behaviors. Data 
analysis showed that volume of C. longa tuber powder and reaction temperatures are two most 
sensitive parameters. Can say using ANN models is useful tools for saving time and cost by 
predicting the results of the reactions and also its analysis shows that they are powerful tool for 
analysis and modeling of the chemical reactions. 
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