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A major concern of current world is deficit in energy sector and renewable energy sources.
Researchers are investigating serval materials to fulfil the energy demands with efficient
manners. In this regard, TMOs based composites are under consideration for the effective
energy storage system. In this study, Pure Cr,O3 and CeO,-Cr203 was prepared via modified
sol-gel methodology. The prepared nanocomposites were investigated for superior
capacitive performance. The structural and X-ray analysis of prepared composite materials
was performed via scanning electron microscope (SEM) and X-ray diffraction spectroscopy
(XRD), respectively. The SEM analysis of CeO,-Cr20; revealed interconnected uniform
distribution of CeO, into Cr,O; matrix ensures higher surface area and active site
accessibility. Similarly, XRD analysis confirm the successful formation of orthorhombic
nanocrystal structure. The prepared nanocomposites were investigated for Supercapacitor
application. The cyclic voltammetry (CV) demonstrated excellent specific capacitance and
energy density value of 1063 F/g and 36.92 Wh/kg, respectively. The superior CeO,-Cr,03
electrode material was also investigated for cycling performance. The nanocomposite
showed excellent retention of 92.43% at 100" cycles. The cycling performance and
capacitive efficiency recommends this material for energy storage system.
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1. Introduction

One of the most topical problems of the modern world is future global energy crisis [1]. The
population growth rate and high level of energy demand, coupled with negative environmental
effects have enforced researchers to reconsider valuable energy sources and sustainable alternative
solutions [2]. One of the most promising ones is the development of renewable sources of energy
coupled with effective energy storage systems [3]. The energy storage devices like capacitors and
batteries have been important in this quest of energy storage [4]. However, batteries have high
energy density and are commonly used while capacitors have high power density. Meanwhile, both
are limited by low energy density of capacitors and low power density of batteries, as well as by
restricted life cycle and safety [5]. Supercapacitor have been emerged as the next-door technology
in energy storage to solve energy problems. It exhibited distinctive features such as rapid
charging/discharging, higher power density, long cycle life, and stability [6]. Supercapacitor are
divided into electrochemical charge-storing type (electrochemical double-layer capacitors or
EDLCs) and pseudocapacitors depending on the charge-storage mechanism [7]. EDLCs are based
on separation of charge physically at the interface of electrode-electrolyte whereas pseudocapacitors
use faradaic redox procedures using metal oxides (MOs) leading to increased energy storage [8].
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Transition metal oxides have been attracted due to demonstration of numerous redox states,
therefore, promoting accelerated redox reactions, and representing lower to higher capacitance [9].
Hybrid electrode materials design is often based on the constituent materials like MnO,, RuO», and
transition metal hydroxides like the Ni, Co, and Cu-based compounds are usually employed to
increase energy storage [10]. Such hybrids sustain high energy density and quick charge transfer
which is perfect in high performance Supercapacitor.

The TMOs can be prepared with a range of techniques such as hydrothermal [11], sol-gel
[12], co-precipitation [13], chemical vapour deposition [14], and electrospinning [14], etc. The sol-
gel method is unique among them and is preferred because it is simple, uses a low processing
temperature, affordable, can achieve control over material composition and morphology on a
molecular scale [15]. Chromium oxide, one of the most popular and renowned transition metal
oxides, due to its number of valence states and electrochemical stability. It has good redox
properties, high conductivity and chemical stability so that it has potential to be used as capacitor
electrode material [16]. Another rare-earth oxide promising to use is cerium oxide (CeO;), which
has variable oxidations (Ce*'/Ce’") and has high oxygen storage capacity [17]. Nonetheless, its
average capacitance resists its alone utilization in Supercapacitor. CeO,, together with chromium,
develops a composite that addresses such shortcomings. The addition of chromium raises oxygen
vacancies, raises lattice oxygen mobility and raises Ce*"/Ce*" redox activity [18].

There is also the advantage of two redox mechanisms (Ce*"/Ce*" & Cr**/Cr®") that provide
larger number of active sites of the charge transfer. Furthermore, structural integrity provided by Cr
enhances the sustainability especially in long electrochemical cycle thereby providing reliable long
term performance [19]. Cr-doped ceria has been investigated as an electrode material for
Supercapacitor by Ghosh et.al. which demonstrated Cr-doped CeO, based materials had an aerial
capacitance of 4.46 mF/cm? at current density of 0.8 mA/cm?. The good stability of the device was
demonstrated with a capacitance loss of only 20 percent after 10,000 charge discharge cycle [20].

The present work aim to prepare and examine the electrochemical performance of sol-gel
engineered Cr,O3 and CeO,-Cr,O3; nanomaterials as a Supercapacitor electrode material. This study
showed that these composites CeO,-Cr,O3 have been rarely documented with superior capacitive
performance. The synthesis of these nanocomposites for energy storage system will really a valuable
step towards sustainable energy goals.

2. Experimental work

2.1. Material used

The preparation of pure CeO; and CeO,-Cr,O3; nanocomposites were prepared via
employing various reagents and precursor salts. The cerium sulphate tetra hydrated
(Ce(S0O4)2-4H,0), and chromium nitrate hexahydrated (Cr(NOs)3;.6H,0O) was utilized as precursor
salts with 99 % purity. The salts used were purchased from sigma Aldrich with high purity. The
sodium dodecyl sulfate (NaCi2H25SO4) used as surfactant that may facilitated in gel formation.
Additionally, the ethanol (C;HsOH) was used in nickel foam as working electrode preparation. All
the salts were used as purchased from the aforementioned company without and further purification
or alterations.

2.2. Synthesis of pure CeO; nanomaterial

A modified or optimized sol-gel methodology was employed for the synthesis of pure
cerium oxide (CeO;) nanomaterial [21]. A 0.863 g of 0.6 M chromium nitrate hexahydrated
(Cr(NOs3)3.6H20) was weighed and added into distilled water. The chromium salt with water placed
on heating plate with stirring of 600-650 rpm at 35°C for 15-20 min. After continuous stirring, the
complete salt solubilized in the distilled water and a clear solution was appeared. Followed by
homogenization, a specific amount of sodium dodecyl sulfate that act as a surfactant was added in
the above solution till the formation of gel. The prepared gel later dried in the oven at 300 °C for 20
min. The dried gel then crushed into fine powder and calcination of material was performed as a
final step for the preparation of nanomaterials. The fine powder again placed in the oven for
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calcination at 500 °C for 5 h. Finally, the calcined material crushed and convert into fine powder.
The prepared material then used for characterizations owing to confirm its structural morphology.

2.3. Synthesis of CeO:-Cr203 nanocomposites

The CeO,-Cr,03 nanocomposite was prepared using same procedure with varying amount
of precursor salts. For the preparation of cerium-chromium composite, 0.731 g of cerium sulphate
tetra hydrated (Ce(S0O4), 4H,0), and 0.798 g of chromium nitrate hexahydrated (Cr(NO3)3.6H,0)
was added into distilled water. The salts of both metals homogenized in the distilled water with
consistent stirring. The above procedure was repeated for the preparation of nanocomposite material.

3. Results and discussion

3.1. Characterization

The X-ray diffraction patterns of Cr,O3; and CeO,-Cr,03 are shown in figure 1. The CeO»-
Cr;03; XRD graph confirmed the successful formation of orthorhombic nanocrystal structure. This
is quite evident that CeO,-Cr,O3 material exhibited formation of a composite phase by interaction
between cerium oxide, (CeO,) and chromium oxide, (Cr»03). The diffraction patterns identified in
the XRD corresponding to JCPDS cards 00-34-0394 and 00-038-1479. The typical reflections
corresponding to JCPDS # 00-34-0394, i.e., 206 = 30° (111), 31 (200), 49° (220), 56.3° (311), 59°
(222), 75°(331) and 78° (420) are readily visible and matched quite well with standard pattern for
cerium oxide clearly [22-25].
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Fig. 1. XRD Spectra of prepared Cr:03and CeO,-Cr,O3 nanocomposites.
Similarly, reflection peaks of chromium oxide corresponding to JCPDS # 00-038-1479,

such as planes at 20 = 24.9° (012), 34.6° (104), 36° (110), 38° (006), 42° (113), 63° (214) and 65.90°
(300) ensure the synthesis of chromium oxide [26, 27]. The co-existence of these different
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diffraction peaks indicating both phases of CeO, and Cr,0s, confirms the formation of a newly
mixed oxide, indicating a successful structural integration at crystalline level. Conversely, the XRD
spectrum of pure Cr.O3 nanomaterial showed a multiphase crystalline structure as evidenced with
the help of three distinct JCPDS profile cards # 00-038-1479,00-007-0248, 00-001-0622. The major
phase was defined as rhombohedral a-Cr,O3; corresponding to JCPDS # 00-038-1479, which was
proved by sharp peaks of (012), (104), (110), (006), (113), (140), (024), (116), (211), (122) (214),
(300), (030), (1010) and (119) planes [28-30]. These peaks denote a well crystallized high-purity
phase. Further assumption of JCPDS # 00-007-0248 [31], (110), indicate the existence of a
secondary Cr,Oj; phase, with minor structural irregularities caused by a possibility of nanoscale grain
borders or other orientations. In addition, there are small peaks agreeing with JCPDS # 00-001-0622;
mainly (030), (202), (311), and (152) which signifies that there is a tertiary phase, probably a small
amount of intermediate chromium oxides or some structural variation produced due to synthesis
conditions [32, 33].

The Fourier transform infrared spectroscopy was employed for the determination of
functional group identification in prepared nanomaterials. The CeO,-Cr,O; binary nanocomposite
shows the presence of many characteristic vibrations bands participating in the formation of the
successful nanocomposite and strong interaction of the metal oxides. The broad absorption peak in
the region 3492 cm™ was assigned to the O-H stretching vibration, owing to water molecules. The
1620 cm ' band was the bending vibration of the H-O-H compound, which again ensures the
absorbent water (figure 2). A peak in the range of 1164-997 cm™ my attributed to C-O stretching
vibration within residual [34, 35]. A notable absorption band was observed at 536 cm™ could be
corresponding to the cerium oxide [34, 36]. Moreover, a higher absorption band of 1630 cm™ is
attributed to adsorbed water molecules in Cr,Oj3 spectrum [37]. The other strong peak at 616 cm™ is
related to Cr-O stretching vibrations and it confirms the existence of chromium oxide [38]. The other
peaks in the range of 1164 -997 cm™ are typical of Cr oxide especially when Cr-O bonds occur in
tetrahedral units or when chromate species happen to be surface bound [39, 40]. This band is
common in both spectra indicates the presence of Cr-O vibrations in binary phase of nanocomposites
as well.

1630

Cry03

Transmittance %

k—r3,492 YR
Ce0,-Cr,03 DR
— 1164-997

536

T T T T T T
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm™)

Fig. 2. FTIR Spectrum of prepared pure Cr:03and CeO;-Cr;03 nanocomposites.

The scanning electron microscopy analysis depicted crucial insight about morphological
and structural distinctions between pure Cr,O; as shown in figure 3 (a, b) and the CeO,-Cr,0s
nanocomposite figure 3 (c, d). The pure Cr,O3 demonstrated irregular sharp-edged nanoparticles
with a scattered porous structures and flaky structural morphology, suggesting reduced
interconnectivity of particle and restricted surface area. Conversely, the CeO,-Cr,O3; nanocomposite
depicts a considerably modified structural morphology in which particles of CeO, seem uniformly
distributed over the matric of Cr,Os. This structural morphology preparing a more cohesive and
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denser structure with an evident enhance in pore density and surface roughness. The preparation of
interconnected and porous network improves transportation of ions and penetration of electrolyte.
These structural improvements are directly corresponding to superior electrochemical excellence of
the CeO,-Cr.0; nanocomposite in Supercapacitor applications.

EHT = 1600 &V

Fig. 3. SEM analysis of prepared pure and binary nanocomposites, (a, b) Cr:O3
and (c, d) CeO>-Cr,03 nanocomposites.

3.2. Electrochemical performance of pure CeO; and CeO,-Cr,Os; nanocomposites

The electrochemical performance of prepared pure CeO; and CeO,-Cr,O3; nanocomposites
was performed by preparing working electrode on nickel foam. The CV curves were taken at distinct
scan rates of 10-200 mV/s in 2M KOH as an electrolytic solution as shown in figure 4. The potential
window of CV curves was set at 0.3-0.8 V. The redox reaction in the electrolyte was facilitated by
the presence of OH™ ions. The symmetrical shapes of CV curves may have attributed to improved
conductivity that directly involved in the efficient electron kinetic mechanism. The electrolyte
employed in cyclic voltammetry performance was 2M KOH, whose pH was high that stabilize the
electrode and take part in the change in redox potential, which ensures the superior capacitive
performance of synthesized nanocomposites [41]. The presence of various redox peaks confirmed
the electrochemical reactions occur on the surface of electrode [42, 43].
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Fig. 4. Cyclic voltammetry performance of prepared pure and binary nanocomposites, (a) CV curves of
Cr;05 (b) CV curves of CeO>-CrOs nanocomposites, (c) cyclic stability of CeO,-Cr:0zat 100" cycles and,
(d) retention of CeO,-Cr;0;z nanocomposites.

The CeO,-Cr,03; nanocomposites illustrated better redox reaction response than pure CeOs,
which ensures its excellent capacitive and energy density performance. The improvement in specific
capacitance comprises increase in surface rea and active sites that lower or decline defects in

prepared nanocomposite. The specific capacitance from CV can be calculated from given equation
1 [44].

s = M (1)
mv(Ve—Vq)
where m illustrates electrode active mass, v represents the scan rate and V-V, presented to potential
window during CV performance.
Similarly, the energy density of nanocomposite materials were calculated using reported
equation 2 [45].

_ CspxAVZx1000
T 2x60 %60

E.D )

The change in CV shape showed with the variation in scan rate. The higher scan rate like
200 mV/s demonstrated transferring of oxidation peaks at higher potential and reduction peaks
towards lower potential. The main difference between oxidation and reduction peaks potential
showed redox reaction irreversibility. The decrease in specific capacitance at higher scan rates,
confirm the uncertainty of internal active sites. At higher scan rate, the electrode surface showed
substantial role in charge-discharge process at the time of redox reaction [46].

Moreover, the cycling performance of the best suitable working electrode material CeO»-
Cr,03 was assessed at 100 cycles of CV. The symmetrical shape of redox peaks at 100™ cycle ensures
the excellent cyclic stability and exceptional retention of material about 92.45%. The composite of
Ce in the chromium matrix may increase the porosity and homogeneity of electrode, which relates
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to superior electrochemical performance. Moreover, the specific capacitance and energy density of
prepared materials were calculated. The pure CeO, and CeO,-Cr,O3 nanocomposites showed
specific capacitance value of 817 and 1063 F/g, respectively. The CeO,-Cr,Os electrode material
presented excellent capacitance than pure one, owing to synergistic effect of cerium and chromium
in composite material as depicted in figure 5. Moreover, the energy density was also calculated about
28.71 and 36.92 Wh/kg for pure CeO, and CeO,-Cr,O3 nanocomposites, respectively.
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Fig. 5. Specific capacitance and energy density comparison of pure and binary nanocomposites, (a) Cy, and
E.D of Cr;0;3 (b) Cy, and E.D of CeO,-Cr,03nanocomposites.

The electrochemical impedance spectroscopy was also used for the further validation and
electrochemical kinetic mechanism determination of prepared pure CeO, and CeO,-Cr;0s3
nanocomposites as shown in figure 6. It is a more viable technique excessively used in
electrochemical kinetics mechanism [47]. However, the composite material showed remarkable
electronic excellence reliability. The EIS analysis particularly Nyquist plot consists of two regions,
a semicircle and a straight line. The CeO,-Cr0;3 electrode material presented lower semicircle that
probably ensures very limited resistance as compared to the pure CeO,, suggesting the remarkable
transportation of charges at the interface of the electrode/electrolyte.
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Fig. 6. Electrochemical impedance spectroscopy of pure and binary nanocomposites.

It illustrated that the charge transfers occur at the interface between electrode and
electrolyte. The mechanism of charge transfer kinetics improves the surface area and conductivity
of Ce0,-Cr,03. The enhance in vertical line segments of composite material showed excellent
diffusion of ions in electrolyte. The adsorption process at the surface of electrode confirmed the
improved surface area and actives sites that may directly improve electrochemical excellence.
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4. Conclusion

A modified sol gel approach was employed for the successful synthesis of pure Cr,O3 and
Ce0,-Cr203 nanocomposites. The sodium dodecyl sulphate used as a surfactant in the sol-gel
methodology. The prepared materials were investigated with SEM, XRD and FTIR analysis for the
confirmation of phase structure, structural morphology and vibrational bands in the prepared
nanocomposites, respectively. The prepared nanocomposites were investigated for superior
capacitive performance. The SEM analysis of CeO,-Cr,O3 composite material depicted successful
formation of material with enhance porosity and interconnected structures. The prepared pure and
nanocomposites were investigated for capacitive performance. The cyclic voltammetry
demonstrated efficient redox reaction on the surface of electrode material, while electrochemical
impedance spectroscopy ensured better ion diffusion kinetic mechanism in nanocomposite material.
The pure Cr,03 and CeO,-Cr,0; electrode materials showed excellent specific capacitance values of
817 F/g and 1063 F/g, respectively. The energy density of both materials was investigated 36.92 and
28.71 Wh/kg, respectively. The CeO,-Cr,O3 nanocomposite demonstrated excellent retention even
after consistent cyclic performance.
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