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This paper focuses on the application of Radial Basis Function generated Finite Difference 

Method (RBF-FD) to solve Magnetohydrodynamic (MHD) flow equation in a rectangular 

duct in the presence of the transverse external oblique magnetic field. Multiquadric (MQ) 

Radial Basis Function is used to obtain the numerical solution of the MHD flow problem. 

Accuracy of the solution can be improved by varying the shape parameter in MQ function. 

The solution obtained from RBF-FD method is compared with the analytical solution and 

classical Finite Difference solution. Contours are presented for various Hartmann numbers 

with different grid sizes and directions of the applied magnetic field. The behaviour of 

velocity and the magnetic field of the MHD flow have been studied using the contours. 
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1. Introduction 
 

In this article, a numerical method based on Radial Basis Function generated Finite 

Difference method is presented for Magnetohydrodynamic (MHD) flow problem. In MHD flow, 

the fluid is electrically conducting unlike hydrodynamic flow. The electrostatic part of the electric 

field is due to the free and bound charges distributed in and around the fluid. The study of the flow 

of conducting fluids in ducts in the presence of transverse magnetic field is important, because of 

its practical applications like Magnetohydrodynamic (MHD) flow through channels in nuclear 

reactors, MHD flow meters, MHD generators, blood flow measurements, pumps, accelerators.  

One of the important problems in MHD flow is under the uniform magnetic field, the flow of 

incompressible viscous electrically conducting fluids in ducts. First, Hartmann and Lazarus [1] 

studied the MHD flow problem under the action of the transverse magnetic field. 

Various forms of MHD problems with different combinations of conducting and non-

conducting walls have been considered by several authors [2,3,4]. The analytical solution is 

available only for a few special cases.  Thus, researchers are interested to apply numerical methods 

to get better solutions of MHD flows with different cross-sections such as square, rectangle, circle, 

ellipse, triangle etc., Tezer-Sezgin [5] used Differential Quadrature Method (DQM) to solve MHD 

flow in a rectangular duct. Using DQM, the problem can be solved for the range of Hartmann 

numbers 2 to 50. Various numerical methods like FDM [6,7], BEM [8] have been used for solving 

the MHD problem. DRBEM method used in [9] to solve the Laplace equation in different 

geometries of a duct, but solutions could not be obtained for Hartmann numbers more than 8.  

FDM was used in [10] to solve coupled non-dimensional equations with grid size 101  101 for 

Hartmann numbers less than 100 and for Hartmann number greater than 100 the mesh size was 

201  201. In most of the above-referenced papers, the solutions were given only up to M = 250. 

For Hartmann numbers, less than 10 the FEM solutions are presented in [11,12]. Further, for 

moderate Hartmann numbers (less than 100) Tezer Sezgin and Koksal [13] extended the solution. 

Then Demandy and Nagy [14] obtained the solution of MHD flow problem up to 1000. Later, the 

solution of MHD problem for the range of 10
2
 to 10

6
 is given by Nesliturk and Tezer-Sezgin [15].  

 

*
 Corresponding author: prasannajeyanthim@gmail.com 



1176 

 

In [16], the solution of the same problem using Boundary element method has been discussed for 

high Hartmann numbers till 10
5
.  

Most of the numerical methods need structured meshes to solve a partial differential 

equation on any domain. In 1970 RBF methods were developed to overcome the structural 

requirements of existing numerical methods. Initially, RBFs were introduced to interpolate 

multidimensional scattered data. RBF methods were first studied by Ronald Hardy in 1968. Hardy 

[17] derived the two-dimensional Multiquadric (MQ) scheme to approximate geographical 

surfaces and magnetic anomalies.  Hardy [18] developed one of the main RBF theory and 

application of MQ-biharmonic method.  Kansa [19,20] showed that his modified MQ scheme is an 

excellent method not only for very accurate interpolation but also for partial derivative schemes.  

After Kansa’s method, many papers were published for solving PDE. RBF based local method was 

introduced in [21] to solve Poisson equations.  Wright and Fornberg [22] stated that of all the RBF 

methods tested, Hardy's Multiquadric method gave the most accurate results.  The grid-free 'local' 

RBF-FD schemes have been developed to solve linear and non-linear, steady and unsteady 

convection-diffusion problems in [23]. Sanyasiraju and Chandhini [24] used the RBF method to 

solve unsteady incompressible viscous flows. The convergence behaviour of RBF-FD formula is 

discussed in [25]. The optimal shape parameter for MQ based RBF-FD at each node of the 

computational domain was presented in [26,27]. 

The RBF-FD method was used to solve diffusion and reaction-diffusion equations (PDEs) 

on closed surfaces [27], convective PDEs [28], in geosciences [29], Navier-Stokes equation [30] 

and heat transfer problem [31]. In all the above papers, the RBF-FD method has given a better 

solution which motivates to solve MHD flow problem using RBF-FD. The computational solution 

of the same problem using RBF-FD method up to Hartmann Number 90 has been discussed in 

[32]. The Radial Basis Function solution of problems defined in [33,34] are presented in [35]. 

In this paper, RBF-FD method is used to obtain the solution for MHD flow problem in a 

rectangular duct with insulated walls. First, the coupled equations are decoupled using a change of 

variables. Then each equation is solved using RBF-FD to obtain velocity and induced magnetic 

field. In this method, the Hartmann number can be increased from 1 to 1000 without any 

complications. 

 
 
2. Radial basis function 
 

The radial basis functions are initially considered as one of the powerful primary tools for 

interpolating multidimensional scattered data. Some of the applications of RBFs are in 

Cartography, neural networks, medical imaging, numerical solution of PDEs, learning theory and 

geographical research. The radial basis function is radially symmetric with respect to the center. 

The RBF-FD formulas are derived from RBF interpolants.  

 

2.1. RBF interpolation 

Let u: R
n
  R be a sufficiently smooth function. Further, let jx j = 1, 2 ..., n be a given set 

of nodal points in the domain of u, with uj, j = 1, 2 ..., n being the known values of the function u 

at jx ’s respectively. Let x  be the free variable point in the domain of u, at which an approximation 

for )x(u  through Radial Basis Function(RBF) is defined as follows, The RBF interpolation  )x(s  

of )x(u  is defined as the linear combination of radially symmetric functions that coincide  )x(u  at 

jx  j = 1, 2 ..., n  and is given by  

 

)()()(
1






n

j

jj xxxsxu                                (4) 

 

where, || . || indicates Euclidean norm. The j's ,  j = 1, 2, …n can be computed from )x()x( jj su   

j = 1, 2, … n. 
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where, jiij xx  ( . The Lagrange form of RBF interpolant was presented in [36]. 

Classifications of RBFs are infinitely smooth and piecewise smooth radial basis functions. 

The former feature has a shape parameter , by varying which the radial function can be varied 

from sharp-peaked one to very flat one. Some of the commonly used radial basis functions are 

given in Table 1. The RBF may have the shape parameter , in that case (r) can be replaced by 

(r,). 
 

Table 1 Examples of Radial basis function. 

 

Name of the RBF (r)  0 order of RBF 

Infinitely smooth RBF   

Multiquadric (MQ) 2)(1 r  









2

1
 

Inverse Multiquadric(IMQ) 

2)(1

1

r
 

0 

Inverse Quadric (IQ) 
2)(1

1

r
 

0 

Generalized MQ (GMQ)  ))(1( 2r  









2


 

Gaussian(GA) 2)re(  0 

Piecewise-smooth   

Polyharmonic Spline Nr 2,0,  
 










2


 

Thin Plate Spline rr k log2
 k + 1 

 

 

2.2. RBF-FD formula for derivatives 

Let L be a linear differential operator (like   / x, etc). In order to approximate L at the 

interior node xi, the neighbouring nodes of xi, say ni nodes  
inxxx ,...,, 21   are considered. The 

following are the three general strategies [23] for choosing neighbouring nodes. 

 Central (C):  The nodes which lie equidistant from the centre xi  

 Upwind (U): The nodes which lie in the direction of flow 

 Hybrid (CU): The nodes are selected as a combination of U and C 

The approximation of Lu( ix )  is expressed as the linear combination of the values of the 

function u  at the neighbourhood points of xi. 

 





in

j

j
i

ji xuwxu
1

)()(L             (6) 

 

The RBF interpolant (4)  is applied in the equation  (6) and the weights are expected to 

give exact result compared to polynomial interpolation. Using equations (5) and (6) the weights 

can be calculated as in [37]  
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The above system of equations can be represented in matrix form  

 

))(( ixBw L            (8) 

 

Equations (6) to (8) describe the local scheme to approximate )( ixuL  at each distinct node 

.ix  

Implementation of RBF-FD scheme is similar to the Finite Difference method for both linear and 

nonlinear equation and also for the coupled equation. 

 
3. Application RBF-FD Scheme to the MHD flow problem 
 

The governing equations of steady laminar flow of an incompressible, viscous, electrically 

conducting fluid in a rectangular duct subject to a constant uniform imposed magnetic field in the 

standard non-dimensional form is 

 

 










 in

y

B
M

x

B
MV yx 12              (9) 

 

 ∇2𝐵 +𝑀𝑥
∂𝑉

∂𝑥
+𝑀𝑦

∂𝑉

∂𝑦
= 0 𝑖𝑛 𝛺                       (10) 

 

with the boundary conditions  

 

 onBV 0              (11) 

 

where, Mx = M sin , My = M cos , 2

1

)( 22

yx MMM  ,  represents the cross-section of the duct, 

  represents the boundary of the duct which is assumed to be insulated. V(x, y), B(x, y) 

represents the velocity and induced magnetic field respectively, and M denotes the Hartmann 

number. Here it is assumed that the applied magnetic field is parallel to the x-axis. V(x, y), B(x, y) 

are in the z-direction, which is the axis of the duct, and the fluid is driven through the duct by 

means of a constant pressure gradient. The duct walls are x = 0, x = 1, y = 1 and y = 1. 

Equation (9) and (10)) may be decoupled by using the change of variables as follows. 

 

BVUBVU  21                     (12) 

 

Then equation (9) and (10) are of the form 

 

 










 in

y

U
M

x

U
MU yx 111

1

2

          

(13) 

 










 in

y

U
M

x

U
MU yx 122

2

2

          

(14) 

 

with the boundary conditions   

 

 onUU 021

            

(15) 
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By applying RBF-FD method to equation (13) gives, 

 

 1
11

2

1

 


iii n

j

ijijy

n

j

ijij

n

j

ijij UEMUDMUC          (16) 

 

where ni is the number of neighbourhood points, Cij is the weights corresponding to 
2
, Dij are the 

weights corresponding to 
x


 and  Eij are the weights corresponding to 

y


 for each nodal point i = 

1, 2, .. n. It is obvious that the Dirichlet boundary conditions can be substituted in equation (16) 

and this leads to the following system of equations. 

 
AU = b                                                                         (17) 

 

where, U is an unknown vector which consists of U values at all interior points, b is a known 

vector and A is a coefficient matrix. U1 values can be obtained by solving the above system of 

equations. To find values of U2 replace Mx = Mx and My = My in equation (16). Then the 

velocity and the induced magnetic field can be obtained using equation (12). 

The analytical solution of the equations (9) & (10) is available for the particular case  =  

/ 2 in [2]. When  =  / 2, Mx = M sin  = M, My = M cos  = 0, the governing equations (9) & 

(10) becomes, 

 

 



 in

x

B
MV 12

          (18) 

 

 



 in

x

V
MB 02

          (19) 

 

with the boundary conditions  onBV 0  

Using the equation (12), equation (18) and (19) can be decoupled as follows 

 





 in

x

U
MU 11

1

2
                                                  (20) 

 





 in

x

U
MU 12

2

2
          (21) 

 

with the boundary conditions
   onUU 021                         (22) 

 

One can solve the equation 20 with homogeneous boundary conditions (22) for U1. For 

simplicity use U in the place of U1.  Applying RBF-FD method to equation 20 gives,  

 

1
11

 


ii n

j

ijij

n

j

ijij UDMUC                   (23) 

 

where, ni is the number of neighbourhood points, Cij is the weights corresponding to 
2
, Dij are the 

weights corresponding to 
x


 for each nodal point xi, i = 1, 2, .. n. It is obvious that the Dirichlet 

boundary conditions can be substituted in equation (23) and this leads to the following system of 

equations. 

 
AU = b        (24) 
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where, U is an unknown vector which consists of U values at all interior points, b is a known 

vector and A is a coefficient matrix. When the system is solved for U1 (M) then U2 (M) = U1(M) 

and V(x, y), B(x, y) can be calculated by using 12. The system of equations (18) and (19) can be 

solved directly, in that case, co-efficient matrix is of order 2n  2n. 

 
 

4. Numerical results 
 

The MHD flow through a pipe of infinite length with rectangular cross-section has been 

considered. Conducting fluid flows along the z-axis. Since the cross-sectional analysis is one of 

the powerful approaches to visualize three-dimensional flows, the flow solution is visualized along 

the rectangular duct. The dimensions of rectangular duct cross-section are 0  x  1, 1  y  1. A 

constant magnetic field B0 is acting in the XY plane and forming an angle with the y-axis.  The 

solutions are presented for different grid sizes and different Hartmann numbers ranging from 1 to 

1000 for the case that the magnetic field parallel to the x-axis. For,
2


   the solutions are 

compared with the analytical solution stated in [38] and classical Finite Difference method. Also, 

the contour plots are presented for 
3


   and 

4


  . Validation of RBF-FD Scheme is performed 

by comparing the contours for different grid sizes and different Hartmann numbers with equally 

spaced points. 

Errors have been calculated using supremum norm and the rate of convergence is 

calculated using the formula  

 

2log

loglog 2/hh EE
rate


                                   (25) 

 

where, Eh and Eh/2 are the errors obtained with grid sizes h and h / 2 respectively.   Table [2], [3], 

[4] and [5] show that the error obtained from RBF methods is less when compared to the Finite 

Difference method. In this paper, the error analysis has been done using MQ. The errors and rate 

of convergence have been computed for velocity and the induced magnetic field with FDM, RBF-

FD (MQ) method is presented in Table [6] and [7]. Accuracy of the RBF-FD method can be 

improved by varying the shape parameter in MQ.  From Table [6,7] it is clear that the error is 

minimized as M increases and h decreases. As the Hartmann number increases RBF-FD gives 

better solution than Finite Difference method. The behaviour of velocity and magnetic field are 

visualized as a surface plot in figure [1] and [2].  For  =  / 3 and  / 4 the velocity and induced 

magnetic field contours (using RBF-FD method) are given in Figure [4]. The results obtained from 

RBF-FD method and FD method are compared with the exact solution as seen in contours 

presented in figure [3]. For different grid sizes, the error obtained from RBF-FD are presented in 

figure [5].  For the fixed grid size 1/40 and 1/80, the error for different Hartmann numbers has 

been presented in Fig [6,7]. It is observed that as Hartmann number increases, the numerical 

solutions from RBF- FD method become closer to the analytical solution when compared with 

Finite Difference Method.  
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Table 2. Local truncation error of velocity profile for RBF-FD method. 

 

h M=1 M=10 M=50 M=100 M=200 

1./10 3.03E-04 9.13E-04 2.30E-03 0.0026 0.0029 

1./20 8.30E-05 2.17E-04 8.71E-04 0.0013 0.0021 

1./25 5.30E-05 1.39E-04 5.98E-04 6.97E-04 0.0010 

1./40 2.10E-05 3.50E-05 2.78E-04 4.42E-04 6.65E-04 

1./50 2.70E-05 1.72E-05 1.84E-04 5.14E-04 5.58E-04 

1./80 3.14E-06  7.10E-06 5.83E-05 3.00E-04  3.25E-04 

 

 

Table 3. Local truncation error of induced magnetic field for RBF-FD method. 

 

h M=1 M=10 M=50 M=100 M=200 

1./10 1.10E-05 2.40E-04 9.20E-04 0.0019 0.0029 

1./20 4.00E-06 2.20E-04 8.20E-04 0.0013 0.0021 

1./25 2.00E-06 1.45E-04 6.27E-04 9.44E-04 0.001 

1./40 1.00E-06 3.60E-05 2.87E-04 4.22E-04 6.65E-04 

1./50 1.00E-06 2.70E-05 1.88E-04 3.19E-04 4.88E-04 

1./80 2.32E-07 9.00E-06 5.38E-05 9.01E-05 2.25E-04 

 

 

Table 4. Local truncation error of velocity profile for Finite Difference method. 

 

h M=1 M=10 M=50 M=100 M=200 

1./10 3.27E-04 0.0016 4.30E-03 0.0037 0.0036 

1./20 8.40E-05 3.76E-04 0.0019 0.0022 0.0017 

1./25 5.40E-05 2.34E-04 0.0015 0.0018 0.0015 

1./40 2.20E-05 9.20E-05 5.56E-04 9.09E-04 0.0011 

1./50 1.40E-05 5.90E-05 3.34E-04 6.40E-04 0.001 

1./80 8.26E-06 1.00E-05 1.27E-04 5.63E-04 6.13E-04 

 

 

Table 5. Local truncation error of induced magnetic field for Finite Difference method. 

 

h M=1 M=10 M=50 M=100 M=200 

1./10 1.30E-05 0.0016 4.30E-03 0.0035 0.0039 

1./20 4.00E-06 3.75E-04 0.0019 0.0022 0.0017 

1./25 2.00E-06 2.33E-04 0.0015 0.0018 0.0015 

1./40 1.00E-06 9.20E-05 5.56E-04 9.09E-04 0.0011 

1./50 1.00E-06 5.90E-05 3.34E-04 6.40E-04 0.001 

1./80 7.14E-07 2.00E-05 1.27E-04 3.15E-04 6.13E-04 
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Table 6. Error Analysis for Velocity Profile. 

 

M h 
Velocity rate 

FD RBF-FD FD RBF-FD 

1 1/10 3.27E-04 3.03E-04 - - 

1 1/20 8.40E-05 8.30E-05 1.960829 1.868135 

1 1/40 2.20E-05 2.10E-05 1.932886 1.982722 

1 1/80 8.26E-06 3.14E-06 1.41329 2.641553 

10 1/10 1.60E-03 9.13E-04 - - 

10 1/20 3.76E-04 2.17E-04 2.089267 2.07292 

10 1/40 9.20E-05 3.50E-05 2.031027 2.301454 

10 1/80 2.00E-05 7.10E-06 2.201634 2.301464 

50 1/10 4.40E-03 2.80E-04 - - 

50 1/20 1.90E-03 8.71E-04 1.211504 1.684682 

50 1/40 5.56E-04 2.79E-04 1.772843 1.642408 

50 1/80 1.62E-04 5.83E-05 1.779091 2.258697 

100 1/10 3.70E-03 2.10E-03 - - 

100 1/20 2.20E-03 1.20E-03 0.750022 0.807355 

100 1/40 9.09E-04 4.42E-04 1.275151 1.440916 

100 1/80 5.63E-04 1.01E-04 0.691145 2.129691 

200 1/10 3.60E-03 1.70E-03 - - 

200 1/20 1.70E-03 1.20E-03 1.082462 0.5025 

200 1/40 1.10E-03 6.65E-04 0.628031 0.851608 

200 1/80 8.13E-04 2.25E-04 0.436176 1.563429 

400 1/80 7.06E-04 1.32E-05 - - 

500 1/40 7.24E-04 5.59E-04 - - 

1000 1/40 5.29E-04 3.68E-04 - - 

 

Table 7. Error Analysis for induced Magnetic Field. 

 

M h 
Magnetic Field rate 

FD RBF-FD FD RBF-FD 

1 1/10 3.27E-04 3.03E-04 - - 

1 1/20 8.40E-05 8.30E-05 1.960829 1.868135 

1 1/40 2.20E-05 2.10E-05 1.932886 1.982722 

1 1/80 8.26E-06 3.14E-06 1.41329 2.641553 

10 1/10 1.60E-03 9.13E-04 - - 

10 1/20 3.76E-04 2.17E-04 2.089267 2.07292 

10 1/40 9.20E-05 3.50E-05 2.031027 2.301454 

10 1/80 2.00E-05 7.10E-06 2.201634 2.301464 

50 1/10 4.40E-03 2.80E-04 - - 

50 1/20 1.90E-03 8.71E-04 1.211504 1.684682 

50 1/40 5.56E-04 2.79E-04 1.772843 1.642408 

50 1/80 1.62E-04 5.83E-05 1.779091 2.258697 

100 1/10 3.70E-03 1.95E-03 - - 

100 1/20 2.20E-03 1.10E-03 0.750022 0.825971 

100 1/40 9.09E-04 4.22E-04 1.275151 1.382189 

100 1/80 3.15E-04 9.01E-05 1.528928 2.227644 

200 1/10 1.90E-03 1.20E-03 - - 

200 1/20 1.70E-03 1.00E-03 0.160465 0.263034 

200 1/40 7.10E-04 6.50E-04 1.259644 0.621488 

200 1/80 4.13E-04 1.01E-04 0.781677 2.686084 

400 1/80 7.06E-04 1.30E-04 - - 

500 1/40 7.24E-04 5.52E-04 - - 

1000 1/40 5.24E-04 3.64E-04 - - 
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(a) M=1                                                          (b) M=1 

 

        
 

(c)M=50                                                                 (d)M=50 

 

      
 

(e)M=100                                                             (f)M=100 

 

Fig. 1. Surface plot with contour lines of Velocity and Magnetic Field for M=1,50,100. 
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(a) M=500                                                        (b) M=500 

 

      
(c) M=1000                                                   (d) M=1000 

 

Fig. 2. Surface plots with contour lines of Velocity and Magnetic field for M=500 and M=1000. 
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(g)                                              (h) 

 

Fig. 3. Velocity and Magnetic field profile for Hartmann numbers M=1, 50, 100, 1000. 

 

      
(a) Velocity                             (b) Magnetic Field 

      
(c) Velocity                               (d) Magnetic Field 

 

Fig. 4. (a), (b) velocity and magnetic field for Hartmann number M = 10, grid size 41  81 &  =  /4, and  

     (c), (d) velocity and magnetic field for Hartmann number M = 50, grid size 41  81 and  =  /3. 

 

    
Velocity                                   Magnetic Field 

 

Fig. 5. Error obtained from RBF-FD method for the grid sizes h=1/10,1/20,1/25,1/40,1/50,1/80. 
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Velocity                               Magnetic Field 

 

Fig. 6. Comparison of Error from FD method and RBF-FD method for Hartmann numbers 

M=1,10,50,100,200,400,500,1000 when h=1/80. 

 

 

    
 

Velocity                                        Magnetic Field 

 

Fig. 7. Comparison of Error from FD method and RBF-FD method for Hartmann numbers 

M=1,10,50,100,200,400,500,1000 when h=1/40. 

 

 
5. Conclusion 
 

In this present article, the numerical solution of MHD duct flow coupled equation under an 

external oblique field. This solution has been computed using the classical Finite Difference 

method and RBF-FD method. The solutions can be obtained for the wide range of Hartmann 

numbers (1 < M < 1000) which could not be done in many of the existing methods 

(computationally RBF-FD method is not expensive).  As the Hartmann number increases the flow 

becomes laminar in the centre of the duct.  Even though the scattered distribution of grids is 

possible in RBF-FD, uniform grid sizes have been taken to compare the results with standard 

FDM. It is observed that for higher Hartmann numbers, the error of proposed RBF-FD is less than 

that of FDM.  In our future work, the same method can be applied to partially conduct walls, 

conducting wall of a cross-section of the shape circle, triangle, hexagon and annulus.   
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