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We have transformed the Scott’s model of protein Hamiltonian to metastable form, by 
means of double coherent unitary transformation. It turned out that in metastable 
Hamiltonian the number of quasi particles is not conserved due to the forming of pairs of 
excitations. The energies of pairs are found and their population is quoted. It is interesting 
that elementary excitations of metastable state behave similarly as excitations of molecular 
vibration field as well as excitations of electromagnetic field. 
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1.  Specificities of protein structures 
 
Adenosine triphosphate (ATP) molecule is specific represent of proteins. Geometrically it 

is helicoidal formed of three macromolecules. Proteins are biologically active structures and a 
good number of biophysical, biological models is based on protein properties. To date a lot of 
investigations related to proteins were done in soliton theories [1,2]. In a sense of biological role a 
lot of efforts were devoted to so-called "antisymmetric solitons", but we have shown that 
antisymmetric solitons are parasitic mathematical solution without physical basis, since they are 
not cyclically invariant. As a matter of fact, the cyclic invariance is basic property of alpha 
helicoidal structures, i.e. proteins. The successful model of proteins helicoids was given by Scott 
[3], where he substituted alpha spiral by the system of interacting discs containing three adenosine 
molecules located in vertices of equilateral triangle, cf. Fig.1.  
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 (a)                 (b) 

Fig.1: (a) Alpha helicoidal structure, and (b) Scott disc with three adenosine molecules 
 

The main property of the system of molecules in disc is cyclic invariance of its physical 
characteristics which can be expressed as follows:  

3 nn FF .                                                             (1.1) 
Taking into account significance of disc condition, in the first part of analysis we shall 

investigate some important properties arising from the cyclic invariance. All analyses will be 
related to one disc. 
 

2.  Cyclic invariance of disc 
 
According to Davydov [2] elementary excitations of adenosine molecules are vibrons, i.e. 

collective waves which appear after exciting internal vibration state of the molecule. This exciting 
can be achieved by infrared waves whose energies are of the order 1000 kB. It means that vibrons 
can be treated as Frenkel’s excitons, but without the problems connected with kinematics of 
operators. As vibration excitations, vibrons are created and annihilated by Bose operators, i.e. they 
belong to boson field.  

Due to cyclic condition from Eq.1.1, for Bose operators B+ creating excitation in 
adenosine molecules, it holds:  




  3nn BB .                                                              (2.1) 
The Kronecker’s symbol in disc can be expressed as follows:  
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This representation of Kronecker’s symbol enables us to use plane waves in 
transformations of the physical characteristics of disc. 

Now we shall examine energies of the vibron excitations in the disc. As it was said above, 
the vibron Hamiltonian of the disc is of the exciton type and can be written, in the nearest 
neighbors approximation, as follows: 
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We shall look for energies of vibrons in disc in two manners.  
First, we shall look for energies of elementary excitations by means of equations of motion: 
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.                             (2.4) 
Taking n = 0, 1, 2 into Eq.2.4, we obtain the system of difference equations from which we obtain 
the energies:  
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As we see, the spectrum of energies in the disc is double degenerated.  
Second, in the Hamiltonian (Eq.2.3) we shall take Fourier transformation of operators, and this due 
to Eq.2.2 becomes: 
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Writing this expression in the expanded form, we have: 

  





 






  

221100 3

4
cos

3

2
cos BBWBBWBBWH



 

  221100 2

1

2

1
BBWBBWBBW  






 






 

.                        (2.7) 
As we see from Eq.2.7, the diagonalization of the Hamiltonian has given the same energies as 
method of equations of motion, and it justifies the abovementioned statement that operators of the 
cyclic invariant system may be expanded over plane waves.  
 
 

3.   Double coherence unitary transformation of the disc Hamiltonian 
 
The Hamiltonian (Eq.2.3) of the disc in Scott's model of alpha helicoids is relatively 

simple and obviously cannot reproduce complicated set of processes which occur in proteins. This 
was the reason for us to provoke the above described existing situation, by looking for some 
possible metastable states passed by the protein in its way to the stable ground state. The choice 
was inspired by the fact [4–7] that if external perturbation excites two or more molecules, this 
causes effect of non-conserving number of elementary excitations. More concretely, exciting more 
than one molecule give chances for forming the pairs of elementary excitations. Consequently, in 
this section the subject of analyses will be estimation of possibility of pairing vibron elementary 
excitations in proteins. This will be done by means of double coherent unitary transformation of 
Hamiltonian (expressed by Eq.2.3) of the disc. Since this transformation is connected with 
important effect of quasi-particle non-conservation, we shall generalize derivation of the 
equivalent Hamiltonian for the cyclic invariant system with N+1 particles.  
If we introduce antihermitian operator  
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where B are Bose operators and φ is real parameter, then the unitary transformation of the 
Hamiltonian:  
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is given by Weyl's identity [8]: 
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It turned out that even terms in Eq.3.3 are either constant or proportional to B+B, while odd terms 
are proportional to BB + B+B+. So we obtain the equivalent Hamiltonian in the form: 

   nddeq HHEH  0 ,                                               (3.4) 
where 
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In the last formula the notation 4φ = ε was used.  
As it is seen, the equivalent Hamiltonian has positive ground state energy E0 with respect to zero 
ground state energy of the Hamiltonian H. It means that the state with Hamiltonian Heq is not the 
most stable state, i.e. equivalent Hamiltonian corresponds to metastable state which becomes 
maximally stable when ε → 0 (when Heq → H).   
The metastable states with Hamiltonian Heq will be examined by means of Green's function 
method. We shall start from commutator Green's function G (8) and creation pairs Green's function 
D:  
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After differentiating Eqs.3.8 with respect to time, and the use of equations of motion for operator 
Bn, we obtain the following equation for G and D: 
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After Fourier time-frequency transformations of (3.9) and (3.10) those equations become:  
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By means of Fourier transformations:  
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the system of equations Eq.3.11 and Eq.3.12 becomes  
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wherefrom is follows: 
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Energy of the system is given by: 
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It is seen from Eq.3.18 that energies Eν of the elementary excitations in the metastable state of the 
Hamiltonian Heq are equal to the energies of the stable state of the Hamiltonian H. This is 
expectable, since unitary transformations do not change eigenvalues. On the other hand 
populations of elementary excitations differ in metastable and stable states.  
Finding of population requires finding of the Green's function spectral intensity. Spectral 
intensities of Green's function G and D are respectively (8): 
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Correlation functions are given by: 
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and they provide populations of the elementary excitations and of the pairs of elementary 
excitations. 
Ending this part it should be pointed out that for ε → 0 the metastable system goes over into the 
stable system. In this case population expressed by Eq.3.21 becomes 

1e

1

B 

 

Tk

Enn BB


,                                                (3.23) 
while concentration of the pairs disappears. It means that realization requires annihilation of the 
pairs of elementary excitations. 
 

4.   Conclusion 
 
Having in mind a series of protein activities, we decided to analyze possibility of 

metastable states of elementary excitations in proteins. The initial, stable Hamiltonian, cannot 
neither cover all activities of proteins nor explain different roles they play in physical processes. 
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So, we transformed initial stable Hamiltonian by means of unitary double coherent 
transformation and found equivalent metastable Hamiltonian which corresponds to reached set of 
processes. The most interesting process is forming of pairs and their decay. Besides, the 
elementary excitations in metastable states behave more ,,classically” than the elementary 

excitations in stable states, since metastable poles are defined by 
2 2 0ex   , i.e. analogously to 

quanta of mechanical vibrations and quanta of electromagnetic field (8).  
This could open new directions in analyses of proteins and their role in physical processes. 
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