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Current laser technology is based on powerful systems generating pulses of very short 

duration. To describe the interaction with matter of these pulses, the application of thermal 

models involving finite speed heat transfer and not infinite as in the standard Two-

Temperature Model is required. This paper is reporting on the development of a unique 

Cattaneo-Vernotte equation in a model which provides information about 3D thermal 

fields, surface temperature, and steady state temperature quantum effects for laser 

irradiation of matter. The integral transform technique, merging the Anisimov and Nolte 

models with the Cattaneo - Vernotte equation, is used. 
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1. Introduction 
 

The two-temperature model (TTM) by laser interaction with solids was proposed by the 

Russian School of Theoretical Physics almost 35 years ago (for a review see Ref. 1). Many 

developments followed since then in specialized literature (see e.g. Refs. 2-17). The solution to 

TTM can be inferred by solving two coupled differential equations. A simplified TTM was 

introduced by Nolte in 1997 [2]. In 2012 a TTM with an infinite speed of heat propagation [3] was 

proposed by the current team. 

TTM developments can also stand for an essential theoretical tool to be used in connection 

with the new strongly emerging technologies based on laser additive manufacturing (LAM), also 

known as solid freeform fabrication, digital manufacturing, or e-manufacturing [18]. LAM is 

developing via material incremental manufacturing (MIM) and implies layer by layer shaping and 

consolidation of powder materials to a given configuration [18, 19]. LAM processes are typically 

applied for manufacturing prototypes while miniaturized features of 100-200 μm can be easily 

approached [18, 20]. 

In practice, the computer aided design (CAD) model of the object to be produced is 

mathematically sliced into thin layers. The object is then produced and consolidated under the 

action of a scanning laser beam [18]. One therefore expects a high progress of the simulation 

process when introducing the complex, more suitable TTM. 

The present paper reports on a new development of TTM, namely by considering a finite 

velocity of heat transfer.  

On the other hand, a quite powerful method was developed to solve the Fourier heat 

transfer equation [21-29]. In this contribution, it was intended to combine the Nolte model with the 

Cattaneo-Vernotte equation [1], in order to develop a unique heat equation for the “classical” TTM 

to be further extended to LAM description. Starting from some plausible physical simplifications, 
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one can get information about 3D thermal fields, surface temperature, and steady state quantum 

effects that usually take place at the laser-metal interaction interface. 

    

 

2. Model 
 

The TTM consists of the two coupled equations [3]: 
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Here, eT  and iT  are the electron and phonon/lattice temperatures, respectively. G is the coupling 

factor between electrons and phonons. t),r(Pa


is the heat source, which is given by the laser-

matter interaction. The interaction can be of the steady state classical or the quantum mechanical 

type. A  is the electron heat capacity and K is the thermal conductivity of the sample. Ci is the 

volume specific heat capacity of the lattice. 

 G  can be determined from the equation [7]:  
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where m is the electron mass, N is the conductive electrons density, v is the velocity of sound in 

the solid, τ  is the electron-phonon collision time and DT  is the Debye temperature. 

In Ref. 3 we have shown that A 100 J/(m
3
K

2
) and iC 6103  J/m

3
K. These data refer 

to metals such as Cu, Au and Ag. Because ei TAC  , a first approximation may be written as 

follows: 
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Next, the following formula from the Nolte model [2] can be used: 

 

                                             ei κTT                                                                    (4) 
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( iτ is the lattice cooling time and Lτ - is the laser pulse time). 

In consequence, the result is: 
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Thus, a generalized equation can be inferred, using the Cattaneo-Vernotte version of the 

heat equation (3) as follows: 
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Thus, the following is obtained:  
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with: 

κC

K
γ

i

  (thermal diffusivity).                                                (9) 

 

Under a generalized form, one can express Pa as:  
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Here, z)(y,Imn is the laser transverse mode {m,n} intensity, mnα is the linear absorption 

coefficient for the mode {m,n}, Smnr  is the surface absorption coefficient for the transverse laser 

mode {m,n}, and q.c. are quantum steady state corrections. u is the step function, which is defined 

as: u(t)={0, if t<0 and 1, if t>0}.  xδ  is the Dirac function while Lτ is the laser pulse duration 0τ  

is the relaxation time, with the physical significance that
0

 is the speed of thermal waves inside 

the target sample. For continuous irradiation, this time becomes the exposure time. 

In the model in question, which uses a rectangular form of the pulse, as compared to the 

Nolte model [2], which uses an exponential type form for the time pulse, the equivalence of the 

two models by hypothesizing that the intensity versus time plots covers the same area is being 

formulated. Therefore, an equivalent time constant Lτ  for the rectangular pulse can be obtained. 

 

 

3. Solutions 
 

The single equation (8) can be solved using the integral transform technique [18-26] by 

calculating the eigen-functions and eigen-values. The target was a parallelepiped of dimensions a, 

b and c. 

The following differential equation from classical theory [18-26] should be considered:  
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Here, Kx are the eigen-functions, 
jli λ,β,μ  the eigen-values, h is the heat transfer coefficient and 

K, the thermal conductivity. 

The boundary conditions read: 
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 Under these boundary conditions, the following eigen-values, iμ  can be inferred: 
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In the same manner, the above formalism may be extended to y and z coordinates. 

By integral transform technique the following solution [25] is obtained: 
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 By limitation to the first ten terms (for i, l, j) the following analytical solution is obtained: 
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The current simulation shows that only the estimation of Te with ten terms is justified, as it 

generates an error that is less than 10
-2 

ºC [23]. 

 Thus: 
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 Through direct and inverse Laplace transform for the variable tone the following is 

obtained: 
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Here: 
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and u(t)stands for the unit step function. 

Next, based on the eT value obtained, iT can be calculated, using Eq. (4). 

 

 

4. Analytical simulations  
 

The new model was applied to simulate the thermal field (in arbitrary units) for the ultra-

short laser pulses heating of an Au bulk sample. The Au target dimensions are (10 x 4 x 4) mm
3
. 

The thermal field evolution depends on the relaxation time which assumes a finite speed 

of the thermal waves:  v=√
γ

t0
 . Here,  is Au thermal diffusivity and t0 is the relaxation time. 

The spatial laser intensity distribution is assumed to be Gaussian (TEM00) and Figs. 1-5 

correspond to the case when x=5 mm and y=0 mm, respectively. 

 

  
 

Fig. 1: Thermal field inside the Au bulk target for a 

single pulse irradiation with a duration of 10
-10

s and 

a relaxation time of 10
-11

s 

 
Fig. 2. Thermal field inside the Au bulk target for a 

single pulse irradiation with a duration of 10
-11

s, 

and a relaxation time of 10
-12

s 
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Fig. 3. Thermal field inside the Au bulk target for a 

single pulse irradiation with a duration of 10
-12

s, 

and a relaxation time of 10
-13

s 

 

 

Fig. 4. Thermal field inside the Au bulk target for a 

single pulse irradiation with a duration of 10
-13

s, 

and a relaxation time of 10
-14

s 

 

 
 

Fig. 5. Thermal field inside the Au bulk target for a single pulse irradiation  

with a duration of 10
-14

s, and a relaxation time of 10
-15

s 

 

 

The general trend visible from Figs. 1-5 is that the lower the relaxation time, the higher the 

thermal wave speed is. Consequently, the target temperature becomes more and more uniform (the 

arbitrary units from Figs. 1-6 are self-consistent). If the pulse duration and relaxation time are 

further decreased the limit of the classical Fourier case is reached, when the thermal wave velocity 

is infinite and the thermal distribution is almost constant. This evolution is depicted in Fig. 6. 

 

 
 

Fig. 6. Thermal field distribution inside the Au bulk target immediately after a single pulse 

irradiation with a duration of 10
-14

s, and a relaxation time of 0 s (a similarity to the 

classical Fourier case can be seen) 
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Fig. 7 illustrates the temperature in the point of Cartesian coordinates (x=5 mm, y=0 mm 

and z=0 mm) versus the relaxation time, when x is the propagation direction.  

 

 
 

Fig. 7. Temperature in the point of x=5 mm, y=0 mm and z=0 mm; inside the Au bulk 

target; when the relaxation time varies from 10
-13

s (pulse duration10
-12

s) to 10
-14

s (pulse 

duration 10
-13

s) 

 

 

In Fig. 7 a decrease of temperature with the increase of relaxation/duration time can be 

noticed. 

Figs. 8 and 9 illustrate the temperature field for a given value of relaxation time and pulse 

duration. 

 

  
 

Fig. 8. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation with a duration 

of 10
-13

s, and a relaxation time of 10
-14

s 

 

Fig. 9. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation with a duration 

of 10
-14

s, and a relaxation time of 10
-15

s 

 

 

The average temperature variation in Fig. 8 is about 10 a.u. while in Fig. 9 is 1 a.u. only, 

i.e. the temperature distribution gets narrower when decreasing the relaxation time/ pulse duration. 

It should be mentioned that the simulations were conducted so that 1 a.u. is identical in all figures. 

 

 

5. "FLAT" beams  
 

A flat spatial distribution beam in intensity shall be considered to be compared with the 

TEM00 case. The target parameters and the total power of the incident laser beam shall be kept 

unchanged. Fig. 10 is illustrating the thermal field inside the Au bulk target for a single pulse 

irradiation of 10
-13

s, a relaxation time of 10
-14

s and a flat spatial distribution of the incident laser 

beam.  
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When comparing Fig. 10 and Fig. 4 (flat “case” versus TEM00 “case”), it can be seen that 

in the flat laser beam situation, the thermal distribution is almost constant in space and time.   

Another key parameter is the heat transfer coefficient, which for the current simulations, 

except for Fig. 11, was chosen to be h=10
-6 

Wmm
-2

K
-1 

[30]. In Fig. 11 h→0 [30] was considered. 

When comparing Fig. 11 and Fig. 12 it can be noted that due to the fact that there is no 

heat exchange between the target and the surrounding medium (high vacuum conditions), figure 

11 is showing larger temperature variations as opposed to the thermal field from figure 12. 

Fig. 13 goes back to the situation of an incident laser beam TEM00, when h→0 was 

considered. Fig. 13, which presents an almost uniform thermal distribution with an increasing 

tendency in time, may be compared with Fig. 4 and Fig. 10.  

Fig. 14 and Fig.15 illustrate the thermal field inside the Au bulk target for a single pulse 

irradiation of 10
-13

s, and a relaxation time of 10
-14

s, for the TEM00 for the laser beam, when h=10
-6 

Wmm
-2

K
-1 

(Fig. 14) and h→0 (Fig. 15). Fig. 15 is showing larger thermal fluctuations as opposed 

to Fig. 14. The reason is, in the opinion of the current team, similar: the very low heat transfer 

target loss from the situation presented in Fig. 15. 

 

  
 

Fig. 10. Thermal field inside the Au bulk target for a 

single pulse irradiation  with a duration of 10
-13

s, 

and a relaxation time of 10
-14

s, for the flat “case” of 

the laser beam 

 

 

Fig. 11. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation of 10
-13

s, and a 

relaxation time of 10
-14s

, for the flat “case” of the 

laser beam, when h→0 

 

 

 
 

Fig. 12. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation of 10
-13

s, and a 

relaxation time of 10
-14

s, for the flat “case” of the 

laser beam, when h=10-6 Wmm
-2

K
-1

 

 
Fig. 13. Thermal field inside the Au bulk target for a 

single pulse irradiation of 10
-13

s,        and a 

relaxation time of 10
-14

s, for the TEM00 “case” of 

the laser beam, when h→0 
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Fig. 14. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation of  

10
-13

s, and a relaxation time of 10
-14

s, for the TEM00 

“case” of the laser beam, when h=10-6 Wmm
-2

K
-1

 

 

Fig. 15. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation of  

10
-13

s, and a relaxation time of 10
-14

s, for the TEM00 

“case” of the laser beam, when h→0 

 

 

In the last years, especially as far as laser cladding processes are concerned [31], part of 

the studies has been focusing on the heat transfer when the incident laser beam is in “very exotic” 

transversal modes intensity.  

Finally, Fig. 16 is showing the temperature field (x - the direction of laser beam 

propagation, y=0 mm) inside the Au bulk target for a single pulse irradiation of 10
-13

s, and a 

relaxation time of 10
-14

s, for the TEM30 “case” of the laser beam, when h=10
-6 

Wmm
-2

K
-1

. Fig. 17 

is showing the thermal field inside the Au bulk target for a single pulse irradiation of 10
-13

s, and a 

relaxation time of 10
-14

s, for the TEM30 “case” of the laser beam, when h→0. 

It can be easily noticed that in normal heat transfer conditions, the spatial anisotropy of 

TEM30 laser mode is producing a spatial anisotropy of the thermal field (Fig. 16). Conversely, in 

Fig. 17, the thermal field is almost uniform, due to a regime where h→0. 

 

  
 

Fig. 16. Temperature field (x - the direction of laser 

beam propagation, y=0 mm) inside the Au bulk 

target for a single pulse irradiation of 10
-13

s, and a 

relaxation time of10
-14

s, for the TEM30 “case” of 

the laser beam, when h=10-6 Wmm
-2

K
-1

 

 
Fig. 17. Thermal field inside the Au bulk target for a 

single pulse irradiation of 10
-13

s, and a relaxation 

time of 10
-14

s, for the TEM30 “case” of the laser 

beam, when h→0 
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6. Conclusions 
 
The new emerging LAM technique aims at producing complex shaped functional 

components, from metals (mainly Au, Cu, Ag or Al), alloys and metal matrix composite powder 

materials that cannot be easily fabricated by conventional methods. The purpose is to meet the 

current demanding requirements from aerospace, automotive, rapid tooling and biomedical 

industries. LAM technology basically resorts to either Laser sintering, Laser melting or Laser 

metal deposition [18]. Each LAM process has specific characteristics in terms of materials, 

procedures, and specific applications [19]. 

To this purpose, the current team has developed a simple new solution approach for the 

two-temperature model, which can be used to evaluate the thermal field in laser-matter interaction. 

In the model proposed, the heat velocity is assumed to be finite. The solutions are analytical, and 

only the first 10 values of the current indices i, l, j have been taken into account. This involves an 

absolute error of only 10
-2 

ºC [30]. It is important to mention that the simulations carried out have 

been performed for rather low heat transfer coefficients, i.e. under high vacuum conditions 

surrounding the target sample [30]. 

The main results of the analysis performed by the current team are: 

1. the maximum value of the temperature field can be varied by changing the relaxation 

time/ pulse duration; 

2. the shorter the relaxation time/pulse duration are, the narrower the temperature field is 

for the Gaussian and flat “cases”; 

3. a key role is played by the “balance” between the heat transfer coefficients and the laser 

transversal intensity modes. If a uniform thermal field is the target, the extreme vacuum condition 

(h→0) should be chosen.   

These results can be important for a fast design of the laser systems used for LAM, i.e. the 

choice between shorter or longer laser pulses. These requirements are related to the characteristics 

of the materials/powders to be processed [32]. More specifically, the question that needs 

answering is whether to apply higher or lower temperature values and more or less uniform 

temperature distributions. This option will be finally reflected in the quality of the laser-treated 

zone. Practically, the choice to be made should be between ns, ps and fs pulses in order to perform 

an optimum LAM process. In any case, a lower residual pressure (higher vacuum) is preferred in 

order to obtain a uniform temperature field with beneficial effects for LAM. 
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