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The diffuse optical tomography (DOT) based on detection of a near InFra-Red Pulse 
(NIRP) called Time Pulse Spread Function (TPSF) and simulation of propagation of this 
pulse source. By combining measured and simulated TPSF can be reconstructed an optical 
image. Therefore, in this work we present the simulation of NIRP propagation in 
biological tissue and the influence of source frequency. This simulation is based on finite 
element method (FEM). 
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1. Introduction 
 
Diffuse optical tomography is a non invasive imaging technique that utilizes near-infrared 

light to probe highly scattering media [1]. In recent years, molecular imaging has emerged as an 
investigative tool for pre-clinical imaging of optical reporter probes in small animals [2]. Optical 
tomography imaging techniques can be classified based on the excitation mechanism employed: 
continuous-wave methods based on steady state excitation sources [3]-[4], frequency-domain 
methods which use frequency modulated (MHz) sources [5]-[6], and time-domain methods [7]-[8] 
based on short (~ fs-ps) laser pulses in conjunction with time resolved detection. Time domain 
measurements offer the most comprehensive information among the three techniques, since a 
single laser pulse implicitly contains all modulation frequencies, including the continuous-wave 
(zero frequency) component [9]. The quality of the reconstructed image depends strongly on the 
accuracy of the forward model [10]. In homogeneous mediums there exist analytical solutions for 
more complex geometries, such as circles, semi-infinite spheres or mediums which were 
developed and detailed in [11]. 

Thus, the method of finite elements is a digital method which is used to resolve the 
problems in the limits characterized by an equation with partial derivates and a set of conditions in 
the limits [12], which is the case of the forward model in optical tomography.  

Indeed, a model of Finite Element Method (FEM) for solving the diffusion equation 
numerically offers advantages in speed and flexibility in comparison with other models [13]. 
Generally, the reconstruction of optical parameter does not use the complete form of TPSF 
calculated because it takes a lot of computing time, so there are some parameters calculated from 
TPSF to simplify this time such as mean time, mean value and variance of TPSF. Thus, the optical 
source has a significant role in reconstruction of the optical image [14]. In this work we use FEM 
in resolution of forward model and study the influence of frequency source on these parameters. 
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2. Finite element approach 
 
The propagation of light through a biological tissue is controlled by the radiative transfer 

equation (RTE) [15]. In the regions where tissue is highly scattering, RTE can be well 
approximated by a diffusion equation [16] (equation (1)): 
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Where: 

c : The speed of light in vacuum. a : Absorption Coefficient. '
s : Reduces diffusion Coefficient. 

 trS ,00 : Local source of the photon.  tr,  : Photons Intensity. 

In two dimensions the equation (1) can be simplified to the following form: 
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For the heterogeneous geometries there is no analytical solution of the RTE, so we must 

use the numerical methods. One convenient numerical method in our field is FEM. We used the 
triangular shape of the elements since it is the most suitable for the irregular forms such as 
biological tissues. 
Our system can conveniently be expressed in matrix form as in equation (2) [14] 
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Where:   
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In a more compact form, the matrix system from equation (3) can be expressed as:   
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Where:   
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This work is based on two dimension cut of cylinder form of phantom contain three 
inclusions with different optical properties ‘‘Figure. 1’’. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Fig. 1, a) Absorption Coefficient a  [m-1].b) diffusion reduced Coefficient '
s  [m-1]. 

 
We use Dirichlet and Robin boundary conditions presented in equation (11) (DBC) and equation 
(12) (RBC) respectively. 
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Where, n is a normal vector and )0( R is the reflection parameter. 

The simulation is based on three sources of a near infrared pulse with temporal and 
spectral profile presented in ‘‘Figure. 2’’.Each source is localised in Cartesian coordinates (x0, y0) 
= (0,-1.5*10-3), see ‘‘Figure. 3. b’’. The spectral profile presents two peaks, see ‘‘Figure. 2. a2, b2, 
c2 ’’, where the peak on the right is mirror of the ones on the left. This mirror effect is due to the 
sampling of the impulse signals, which always create a mirror spectrum around the sampling 
frequency. Thus each source has its frequency and wavelength as follows, Source1: (f1=1.48 [THz], 
λ1=202.70 [μm]), Source2: (f2=0.5 [THz], λ2=600 [μm]), Source3: (f3=50 [GHz], λ3=6 [mm]), but 
all sources have the same intensity. 
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The mesh of our phantom is presented in ‘‘Figure. 3’’, where the areas which the optical 
properties are different to the principal phantom and with the close relations at the borders are 
finer mesh. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig2, a) Object tests mesh in 2D (1526 nodes, 2814 elements). b) Source and Detectors position. 
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Fig3, a) Object tests mesh in 2D (1526 nodes, 2814 elements). b) Source and Detectors position. 
 
 

3. Results and discussion 
 
In this section we study the influence of the sources on a range of parameters, by 

comparing the results obtained for different frequency sources with the same intensity. ‘‘Figure. 4’’ 
shows TPSF time profiles of detectors for three sources. The TPSF’s detected in the left (Detector 
5, 6, 7) presents homology form to the other on the right (Detector 3, 2, 1), because the 
homogeneity in geometrical form (half circle) and optical parameters between form in the left and 
right, except that the intensity detected in detector 1 is higher than the one in detector 7 which is 
homologue with the detector 1, even idea for the detector 2 and detector 3 which are homologues 
to detector 6 and detector 5 respectively, this difference in intensity between each homologues 
detectors is due to the difference of optical properties between the inclusions of left ( a =0.022 

[m-1], '
s = 2.75 [m-1]) and right ( a =0.022 [m-1], '

s = 0.55 [m-1]), this two inclusions present 

tumour in our object. The inclusion in the left is more hampering for signal propagation than the 

other in the right because the diffusion reduced coefficient ( '
s ) of left inclusion is greater than the 

other on the right which justifies the intensity decrease between detectors 1, 2, 3 in right and 
detectors 7, 6, 5 on the left respectively. Indeed, ‘‘Figure. 5’’ shows the variation of mean time of 
TPSF detected as a function of detection angle of the three sources, In this three curves we observe 
that the mean time increases when the frequency source decrease. This is due to the increase of 
width time (WT) of sources (‘‘Figure. 2’’, temporal profile), for source1 WT1=0.65*10-9 [s], 
source2 WT2=1.4*10-9 [s], and source3  WT3= 21*10-9 [s], thus the width time impulse influences 
the mean time of TPSF. 
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Fig. 4, TPSF time profile of Detectors for three sources. 
 

 
 

Fig. 5, mean time of TPSF detected with the variation of detection angle for three sources. 
 
 

Finally, ‘‘Figure. 6’’ shows the mean value and the variance of detected TPSF as a 
function of detection angle for three sources. We observe that when the source frequency 
decreases, the mean value and variance of TPSF also decrease and these phenomena are 
demonstrated physically by the decrease of the source energy. 
 



1277 
 

 
 

Fig. 6. Variation of mean value and variance of TPSF as a function of detection angle for three sources. 
 
 
 

4. Conclusions  
 
The temporal profiles (TPSF) of photons diffused in highly scattering media such as 

biological tissue, are computed at a base of FEM. This program intended to reconstruct images of 
the phantoms to be investigated with our time-resolved tomography set up. During the 
reconstruction process, the parameters of interest, (absorption and reduced diffusion coefficients) 
will be iteratively adjusted to perform constrained nonlinear minimization of an objective function 
of the distance between measured and computed temporal profiles. Applications are expected to 
concern the contribution of resonance magnetic imaging (RMI) in (DOT). Medical applications in 
cerebral activation are also considered. 
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