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The tandem mass spectrometry (MS/MS) characterization of cyclodextrin derivatives, 
namely randomly esterified 6-O-(3-hydroxybutyril)-β-cyclodextrin (HBCD) and triacetyl-
β-cyclodextrin (TABCD) is described. The chosen compounds share certain structural 
similarities which are exploited in order to establish a general approach in their tandem 
MS characterization. The TABCD commercial product is fully esterified and presents in 
single stage MS a single peak while HBCD presents a molecular weight distribution due to 
the variation of the substitution degree. HBCD product was obtained via ring opening of 
β-butyrolactone in the presence of β-cyclodextrin (CD).  First, the specific fragmentation 
pathways are established for protonated and sodiated TABCD parent ions and, based on 
the established fragmentation behaviour, HBCD compounds are analyzed. Our findings 
indicate that in MS/MS analysis of esterified cyclodextrins the cleavage of the substituents 
can be selectively induced thus offering information on the substitution patterns. 
Moreover, we demonstrate, using tandem MS technique, that β-butyrolactone monomer 
units are attached to the CD molecule not as oligomer chains but as singly esterified 
molecules. 
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1. Introduction  
 
The last decade a growing need for novel inexpensive and green routes for synthesis of 

polymer architectures suitable for biorelated applications was observed. In the same time the 
characterization tools become more sophisticated in order to meet requirements for fast and 
accurate analysis. Thus, mass spectrometry arises as a technique of choice compared to other 
alternative techniques like NMR and IR spectroscopy [1]. MS can offer rapid answers to issues 
like molecular weight distribution, endgroup identification, comonomer composition, etc. 
Monodimensional MS provides information concerning the m/z (mass to charge ratio) of each 
polymer component allowing to determine the mass of the polymer chain to some extent, 
according to the mass accuracy of the mass spectrometer in use. This approach is commonly 
employed for already known polymer systems which have already established synthetic 
procedures. However, novel synthetic procedures require more than a single stage MS 
measurement for performing structural assignments. In such situations the structural 
characterization is performed by fragmentation experiments called multidimensional MS. 
Detection and interpretation of the fragmentation spectra ions allows reconstruction of the primary 
structure (connectivity) of the selected polymer architecture in the case of polyesters [2-8].  

Complex structures like cyclodextrin (CD) derivatives received attention due to their 
potential biological applications [9]. The synthesis strategies consist in single or multiple step 
attachment of organic moieties or in using native CDs to initiate the polymerization, yielding CD 
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end caped polymers. The preparation of CD-polyesters conjugates appeals to CDs in two ways, 
first as initiator and then as catalyst of the ring opening polymerization (ROP) [10-15].  

The characterization of CD-oligomer derivatives is quite difficult to characterize because 
they present structural heterogeneity. Single stage MS can differentiate among different 
polymerization degrees (substitution degrees). However, isobaric peak series due to positional 
isomers can occur and the structural assignment should appeal to chromatographic separations or 
to tandem MS to perform analysis at molecular level as we previously described [12]. 

Several studies were performed on CD derivatives using as characterization tool ESI or 
MALDI MS [16-19]. Because of the complexity of the analyzed samples, chromatographic 
separation with offline [20] or online MS detection of the compounds [21, 17] is required. The MS 
characterization of polyester functionalized CDs used MALDI [10, 13, 14] or ESI MS [11, 12] to 
provide mass related data able to support, together with NMR spectroscopy, the structural 
assignment of the products at molecular level. However, only single stage MS without prior 
chromatographic separation was used in most cases [10, 12-14], despite the complexity of the 
analyzed mixtures. 

The MS/MS studies for structural identification at molecular level of polyesters represent 
a subject of interest in the last period [3, 22-25]. The fragmentation occurs through the cleavage of 
the ester bonds by 1-4 H rearrangements. Tandem MS allows structural identification of polyester 
tethered CD as showed in one of our previous studies[12]. In the current paper we propose a 
thorough characterization of these compounds by using  tandem MS aiming to establish the 
peculiarities of fragmentation processes and the usefulness of the resulted information in structural 
assessment of esterified CDs . The samples taken into consideration are random 3-OH butyrated β-
CD obtained through solution ring opening polymerization of  β-butyrolactone (BL) [26] and a 
commercial sample of TABCD.  

 
 

2. Experimental  
 
HBCD (6-O-3-OH butyril-cyclomaltoheptaose) samples were obtained as previously 

described [26], through solution ring opening polymerization of β-butyrolactone (BL) initiated by 
β-cyclodextrin in presence of sparteine. TABCD (triacetyl-β-cyclodextrin) was purchased from 
Aldrich.  

MS/MS experiments were conducted using the AGILENT 6520 LC ESI QTOF mass 
spectrometer equipped with a dual ESI source. The data were analyzed using the Mass Hunter 
software. The concentration of each solution was 0.1 g/L (acetonitrile/water 1:1 v/v mixture) for 
mass spectrometric analysis performed via direct infusion of the sample. The ESI MS parameters 
were set as follows: Vcap = 4000 V, fragmentor voltage = 200 V, drying gas temperature = 325 
oC, drying gas flow = 10 L/min and nebulizer pressure = 35 psig. Nitrogen was used as spraying 
gas. The fragmentation was performed using nitrogen as collision gas at a pressure of 18 psig 
inside the collision cell. The TABCD and HBCD samples yielded fragment ions at variable Elab 
according to the type of ion. Samples were infused via an external syringe pump (KDS Scientific) 
with a flow of 0.05 mL/min. For protonated samples the injected solutions were spiked with 0.1 M 
formic acid solution (1/10 vol/vol of sample solution). For the sodiated samples NaI was used in 
the same proportion as formic acid. 

 
 
3. Results and discussion  
 
Cyclodextrins (CDs) are natural, cyclic oligosaccharides produced from starch. CDs with 

different degrees of polymerisation have been discovered but the most important are α-, β- and γ-
CD composed of six, seven and eight α-D-(1-4) glucopyranoside moieties, respectively. Their  
structures are viewed as hollow, truncated cones where the C-6 primary alcohols crown the narrow 
rim while the wider rim is crowned by the secondary alcohols at positions C-2 and C-3 [27].  
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The fragmentation studies of CD and CD derivatives are trying to answer several 
questions related to specific structural details of these compounds. The collision induced 
dissociation (CID) fragmentation of cyclodextrins undergoes through the cleavage of the 
semiacetalic bonds resulting in daughter ions with a specific mass related to the number of 
glycoside structural units (m = n*162 Da, 162 Da represents the mass of one structural unit and n 
is the number of structural units) [28].  

The compounds discussed in this paper are  originating from β-CD and basically they can 
be described as esterified CD with acetic acid (TABCD) or 3-OH butyric acid [12, 26] (Scheme 1). 
TABCD is a commercial product with all OH groups modified with acetyl moieties while HBCD 
was obtained through ring opening of β-butyrolactone. The previous studies for structural 
elucidation were performed via LC ESI MS, COSY and HSQC NMR spectroscopy [26]. The 
obtained results showed that CD molecule is esterified with an average of 4 molecules of 3-OH 
butyric acid (BA) at C6 position. 

 
Scheme 1. Structural description of the TABCD and HBCD compounds 

 
 

The aim of the tandem MS experiments is to establish a fragmentation pattern related to 
these specific structures, namely esterified cyclodextrins. This pattern would be further useful for 
structural identification at molecular level of structurally similar compounds. 

TABCD product, a fully esterified CD was first analyzed. A fragmentation behaviour 
similar to the one described generally for cyclic oligosacharides [29-34] with the cleavage of 
semiacetalic bonds, as depicted Scheme 2 - pathway C, was expected. However, the presence of 
the ester side groups may modify this behaviour. 

The fragmentation in collision induced dissociation processes depends on various factors, 
among them being the nature of cations contributing to the formation of the parent ionic species. 
Therefore, both protonated and sodiated TABCD ionic species, were submitted to CID. The 
MS/MS spectrum of [TABCD]+  is showed in Figure 1. 
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The A and C types of processes are occurring in similar energetic conditions. We may 
remark that these fragmentation processes are consecutive, being given the nature of fragmentation 
on the QTOF mass spectrometer.  

All the daughter ions are identified by their mass in the Table 1. In principle, the table 
cells contain all possible masses obtained from all the possible co-monomers combinations of A 
and C pathways and the values which were actually found in the MS spectrum are highlighted.    
 

Table 1. Masses of the fragmentsa observed in the fragmentation (A and C pathways) of the  
[TABCD]+ (GL units have the mass of 108; AC units have the mass of 60) 

 

  GL1 GL2 GL3 GL4 GL5 GL6 GL7 

AC0 109 217 325 433 541 649 757 

AC1 169 277 385 493 601 709 817 

AC2 229 337 445 553 661 769 877 

AC3 289 397 505 613 721 829 937 

AC4 349 457 565 673 781 889 997 

AC5 409 517 625 733 841 949 1057 

AC6 469 577 685 793 901 1009 1117 

AC7 529 637 745 853 961 1069 1177 

AC8 589 697 805 913 1021 1129 1237 

AC9 649 757 865 973 1081 1189 1297 

AC10 709 817 925 1033 1141 1249 1357 

AC11 769 877 985 1093 1201 1309 1417 

AC12 829 937 1045 1153 1261 1369 1477 

AC13 889 997 1105 1213 1321 1429 1537 

AC14 949 1057 1165 1273 1381 1489 1597 

AC15 1009 1117 1225 1333 1441 1549 1657 

AC16 1069 1177 1285 1393 1501 1609 1717 

AC17 1129 1237 1345 1453 1561 1669 1777 

AC18 1189 1297 1405 1513 1621 1729 1837 

AC19 1249 1357 1465 1573 1681 1789 1897 

AC20 1309 1417 1525 1633 1741 1849 1957 

AC21 1369 1477 1585 1693 1801 1909 2017 

 
aThe values from the highlighted cells correspond to the peaks found in the MS spectrum from 
Figure 1. 
 

In Fig. 1 and Table 1, a pattern related to the neutral loss of AC units can be identified. 
Unexpectedly, the AC units are lost according to their positioning on the GL units as no more than 
3 AC units are lost (the load of one GL unit) and than a semiacetal bond can be cleaved. Probably 
the collision energetic conditions are leading to repeated consecutive losses of AC until one GL 
ring is cleaved and the process repeats until all the co-monomer units are depleted. 

Besides the main peaks, there may be observed a less representative series resulted from 
the ester bond cleavage on the acyl side (pathway B). The lost fragments can be inferred using a 
similar algorithm but the neutral losses can have 42 Da value (Scheme 2).  

However, when TABCD ionic species are obtained using Na+ cations the fragmentation 
spectrum is significantly changed (Fig. 2).   
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