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In this research, we aim to study the boundary heating problem of organisms and to 

develop a novel methodology for future applications in bioheat transfer and cosmetic laser 

surgery problems. For biological tissues, the characteristic time needed for accumulating 

the thermal energy required for propagative transfer to the nearest element within 

nonhomogeneous inner structures is very large. If the boundary heat source is relatively 

weak, the Pennes equation is appropriate for describing the heat transfer mechanism. 

However, for very strong heat source such as laser irradiation, which requires an extremely 

short time and its heat flux is tremendously high, the thermal wave effect becomes evident 

during the heat transfer process. In this case, the governing equation is a hyperbolic 

thermal wave equation. We propose a sampled-data strategy for boundary control of this 

heat conduction problem modeled by either the Pennes equation or the thermal wave 

equation. With zero-order-hold, the boundary control law becomes a piecewise constant 

signal, in which a step change of value occurs at each sampling instant. Through this 

discretization technique, the governing partial differential equation is dissected into a 

sequence of constant input problems, to be solved individually for a sampled-data 

formulation. With this sampled-data formulation, the boundary control problem can be 

solved and implemented digitally. 
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1. Introduction 
 

Laser has been widely used in cosmetic dermatology, which involves skin rejuvenization 

and the removal of melanosomes, tattoos, hair, etc. [1-5]. In laser treatment, the target molecules or 

melanosome within the tissue absorb the thermal energy converted from laser light. As the thermal 

energy is accumulated to a certain level, denaturation or necrosis occurs, leading to damage of 

structure [6-9]. The goal of treatment is to damage only the target molecule or melanosome 

without burning the surrounding tissue. Therefore, during the laser heating process, it is important 

to predict the human skin temperature distribution, as a means to control the extent of thermal 

damage to the tissue around the treatment target.  

For skin temperature and laser heating time control, it is important to obtain the 

temperature field of the entire treatment region. Since the use of invasive temperature probes is 

usually not allowed, numerical methods are most widely used for temperature analysis and 

prediction in biological tissue [10-17]. In this paper, we propose a discrete-time human skin 

temperature prediction method taking into account of the complex blood perfusion and metabolism, 

to evaluate accurately the thermal response of the biological tissues, to provide doctors with useful 
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data of the thermal analysis of biological tissues, so as to enhance therapeutic effect and patient 

safety during laser treatment.  

The heat conduction equation in materials is based on Fourier's Law. The law serves to 

define the thermal conductivity of the medium. The effect of heat transfer depends on heat source 

and thermal conductivity. In biological tissues, the heat source term including the metabolic rate of 

tissue, the perfusion rate of blood and the volumetric heating etc. Therefore, in 1948, the Pennes 

bioheat equation is proposed and it is applied to solve the heat transfer of organisms [18].  

Due to the Pennes equation is simply and effectively, it is the most commonly used to 

solve the temperature distribution of skin tissue, such as simulations of hyperthermia, hypothermia 

and cryosurgery, analysis of thermal diagnostics and thermal comfort, estimation of thermal 

parameter, and evaluation of burn injury etc. [19-22]. As is well known, the Pennes equation is 

based on Fourier's law. It described an infinitely fast propagation of thermal signal, obviously 

incompatible with physical reality. However, its analytical solution cannot satisfy the starting 

transient temperature response. Thus, the thermal wave equation introduces a relaxation time that 

is respond to the thermal disturbance. It can be solved the paradox of the Pennes equation [23-27].  

The thermal relaxation time for general homogeneous materials ranges from 10
-14

 to 10
−8

 s 

[7]. Because the heating processes are much longer than this time scale, the phenomenon of 

thermal wave shows no clear effect in general homogeneous materials. Due to the human skin is 

non-homogeneous material, it suggests the existence of non-Fourier heat conduction behavior 

(wave-like), particularly under rapid heating/cooling conditions. In fact, the living tissues are 

nonhomogeneous material, and accumulating enough energy to transfer to the nearest element 

would take time. The value of τ in biological bodies has been predicted to be 20-30 s [7]. Mitra et 

al [13] conducted experiments on processed meat and obtained the value of τ is 16 s.  

During thermal therapies, the high-energy short-duration heating mode can produce an 

appropriate and accurate of heat. However, the non-Fourier heat transfer behavior in living tissue 

plays an important role during rapid heating. The thermal wave effect must be considered. The 

literature [28] has been shown that the relaxation time (or characteristic time) of tissue will delay 

the appearance of peak temperature.  

The thermal wave model of bioheat transfer [25-26], TWMBT, is the most suitable 

equation to solve the bioheat transfer problems. However, solving this partial differential equation, 

PDE, is difficult and complex. At the present, the most common numerical methods are the finite 

difference approximation method and the boundary element method. The solving mode for these 

types of heat transfer problems is: First, give a heat source on the skin surface, and then the 

internal temperature distribution can be predicted. However, to avoid human skin burning down or 

necrotic, the laser irradiation time must be increased step by step until the longest laser irradiation 

time is predicted [20, 29-31]. And this prediction time can be ensured the safety of the cosmetic 

laser surgery. But, this approach has a major drawback, that is, the prediction process of the 

simulation is time-consuming and tedious.  

For the transient problems (For example, heat transfer, wave propagation, vibration, elastic 

beam, chemical reaction, time delay, etc.), the mathematical models are expressed as to PDEs. 

Solving these equations is complex and difficult, and they are usually classified as distributed 

parameter systems, infinite-dimensional systems or finite-dimensional system [32-33]. Therefore, 

it is very important to establish an effective mode to solve these systems. The sampled-data 

formulation (finite- dimensional, discrete-time control method) has been applied to solve the 

complex PDEs widely [34-35]. In this paper, applying zero-order-hold to the control channel leads 

to a constant control problem within each sampling period. The solution of the distributed system 

is thus lifted into a sequence of continuous-time signals. The method of separation of variables can 

then be applied to yield an infinite-dimensional system of ordinary differential equations, referred 

to as modal equations. In other words, first, the system is segmented in time, and then expanded in 

frequency. Finally, each modal equation is discretized into a sampled-data formulation. Thus, the 

boundary control problems have been solved effectively, at the same time, the control and 

spillover problems have also been avoided in using finite-dimension approximation method 

[36-38].  

http://tw.dictionary.yahoo.com/dictionary?p=accurate
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In this study, the sampled-data formulation is applied to solve the hyperbolic PDE. It is an 

innovative, effective and widely applied methodology. In solving the bioheat transfer problems, it 

can directly control the maximum irradiation temperature of laser on skin tissue, and the time of 

laser irradiation or the given energy can be derived. This formulation is a reversed heat transfer 

algorithm that is simply, fast and safe. The results will be applied in cosmetic laser surgery that can 

estimate the thermal parameters of non-invasive thermal diagnostics, thermal therapy and 

cryosurgery. 

  

 

2. Mathematical Analysis  
 

2.1 Mathematical Formulation of Thermal Wave Equation 

 

Consider the human skin, it can be divided into the epidermis, dermis and subcutaneous as 

Fig. 1. The physical properties of each layer are listed in Table I [16]. Although the three layers in 

human skin have different physical properties, human skin can be viewed as a single layer based 

on the following three reasons: First, the thermal properties of these three layers are very similar. 

Second, the thicknesses of epidermis and dermis relative to subcutaneous are too thin. Third, in 

references, typical values of physical properties for homogeneous skin tissue have usually been 

chosen as 

sCkgJCCsmkgWsmkgWmkg bbb 20,/4200,/5.0,/5.0,/1000 333  

and the total thickness of human skin is mL 01208.0  [24,26].  

 

 
Fig. 1 Schematic diagram of skin structure 

 

Table 1. Physical properties of the human skin 

 

Epidermis 

Specific heat 

  CkgJC o/  

Volumetric 

blood 

perfusion rate 

 sWb /1  

Thermal 

conductivity 

  CmWK o/  

Thickness 

 ml  

Density 

 3/ mkg  

Epidermis 3578-3600 0 0.21-0.26 80*10
-6

 1200 

Dermis 3200-3400 0.00125 0.37-0.52 0.002 1200 

Subcutaneous 2288-3060 0.00125 0.16-0.21 0.01 1000 

blood 3770 -- -- -- 1060 

 

Pennes bioheat equation (2) [18] is usually applied to solve the bioheat problems, in which 

the conduction term is based on the well-known Fourier's law [11]. 
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   trTKtrq ,,


        (1) 

where q  is heat flux, T  is skin temperature, r


 is position vector, K  is thermal conductivity 

Pennes Bioheat Equation  

 

            trQtrQ
C

trTK
C

TtrT
C

CW
trT

t
rmb

bb ,,
1

,
1

,,








  (2) 

 

where   is density, bW  is the blood perfusion rate, bC  and C  are the specific heats of blood 

and tissue, mQ  is the metabolic rate of tissue (the thermal energy transformed from chemical 

energy caused by partial metabolism), rQ  is the volumetric heating rate (since heat is incident on 

the skin, it can be considered as zero), bT  is the temperature of blood,  bbb TTCW   is the 

blood flow term (the thermal energy transmitted from in/out controlled volume blood). 

However, under the conditions of instantaneous heating and cooling, the conduction term in the 

heat transfer equation cannot be governed by Fourier's law. Thus, Cattaneo formulated a modified 

unsteady heat conduction equation (3) [23], and led to the proposition of the thermal wave 

equation (4) [24-26]. 

NonFourier’s Law (unsteady heat conduction equation)  

     trTKtrq
t

trq ,,,






        (3) 

where   is thermal relaxation time in homogeneous substances (range from
1410

 to 

810
seconds) or characteristic time in biological systems (range from 20 to 30 seconds).  

Thermal Wave Equation  

 

      

          

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
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



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




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
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trQ
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trT

tC

CWC
trT

t

rmrm
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bbbb

,,,,
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,

,,,

2

2

2

2












   (4) 

 

The tau value in biological systems is much larger than in homogeneous substances, for 

the bioheat problems of instantaneous heating and cooling, the simulation results of Pennes 

equation and thermal wave equation have significantly different. That is to say, the simulation 

result of Pennes equation is not meet for real situation. Therefore, in this paper, solving these 

bioheat problems is applied thermal wave equation. 

Because of the short time of laser irradiation and the small area for irradiation, the 

temperature diffusion effect on the skin surface can be neglected. The thermal wave equation can 

be simplified as a one-dimensional equation.  

Assuming thermal conductivity is constant and without metabolic rate and blood perfusion 
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rate, 
C

K
b 1 , 





C

CWC
b bb
2 , 

C

CW
b bb3 , 

K

CW

b

b
b bb

1

3
4 , the equation (4) can be 

deduced as  

        txT
x

bTtxTbtxT
t

btxT
t

b ,,,,
2

2

1322

2














    (5) 

For the case of a constant heat flux on the skin surface during a very short laser heating 

duration ( st ), and assuming the temperature difference is zero in the tissue ( Lx  ), the boundary 

conditions and initial conditions can be described as 

   

 
 

 

 
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b

s

s

b

  (6) 

Introduce a transformation to homogenize the boundary conditions (6): 

      bTxvFtxutxT  ,,  

where  xv is an auxiliary function whose boundary values satisfy:  

    04  xvbxv ,   10 v , and   0Lv  

then  

 
  
 Lbb

Lxb
xv

44

4

cosh

sinh 
        (7) 

 

Transforming  txT ,  into  txu ,  yields, and eq. (5) and (6) can be deduced as 

 

       txu
x

btxubtxu
t

btxu
t

,,,,
2

2

1322

2














      (8) 
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0
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0,0
..   (9) 

 

First, using separation of variables, let      tTxXtxu , , and substituting into (8) 

yields, substituting the boundary conditions (9) into  xX , the  xX  and  tT  can be shown 

as [26,31] 

 xpX nn cos  

where  xpncos  are eigenvectors, and they are orthogonal to each other. 
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Secondly, using the superposition principle, the analytical solution of thermal wave 

equation can be derived as  

 
      
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where 
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

 

 

2.2 Sampled-data formulation 

 

With eq. (8), and boundary condition (9), the general solution for  txu ,  is  

     





1

cos,
n

nn xptqtxu  

then 

            b

n

nnb TxFvxptqTxFvtxutxT  


1

cos,,  

where  tqn  is the modal displacement for the eigenvector  xpncos  that satisfies the second 

order differential equation  

        ,...2,1,02

132  ntqpbbtqbtq nnnn
     (11a) 
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The initial condition can be obtained by expanding initial condition function  xFv  as 

infinite series of the eigenfunctions  xpncos   

    ,...2,1,00,0  nqFq nnn
 ,    (11b) 

where  

   





1

cos
n

nn xpxv   

Applying discrete-time sliding mode control to eq. (8) and (9). Let the boundary control be 

put through a zero-order-hold 

    ,...2,1,0,
~

1
~
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~
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The lifting converts a continuous-time signal into an infinite sequence. Each component of 
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~
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t

,
2

2




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Lifting the modal equation (11) yield 

            ,...2,1,00,0,02
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k
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k
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k

n
   (12) 

The initial conditions of  tqk

n  depend on the piecewise constant control kF , leading to 

the continuous-time signal  tqk

i  loses continuity at each sampling instant 

     Tqq k

i

k

i

~
01

 

Introduce a new transformation to continue state variable  

    ,...2,1,  nFtqt nk

k

n

k

n   

Eq. (12) for  tk
n  becomes 
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The N-mode approximation  txT k ,  for the kth sampling period is 
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k TxpttxT 
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cos,          (14) 

The discrete-time representation for the modal equation (13) can be obtained  

 2,1,03,2,1)()1(  knFkk nknnn  ,    (15) 
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The system equation for sampled-data boundary control 
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                (16) 

 

To employ the system equation for sampled-data boundary control (16), the temperature 

distribution prediction of human skin can be controlled by adjusting the heat flux of laser. The 
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burn injury problem of human skin is therefore avoided. 

 

3. Results and discussion 

 

To verify the proposed method, we demonstrate the temperature distribution in human skin 

by laser heating, and the thermal properties for human tissue used by [24-25]  

CkgJCC b  /4200 、 3/1000 mkg 、 smkgWb  3/5.0 、 CmWK  /2.0 、

s20 、 0rQ 、 mL 01208.0 。 

For the central difference approximation of first-order and second-order derivatives:  

1 1( ) / (2 )i i i

d
z z z h

dx
  

  

2
2

1 12
( 2 ) / ( )i i i i

d
z z z z h
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   

 

 

For the forward difference and backward difference approximations of first-order 

derivatives: 

1( ) / ( )i i i

d
z z z h

dx
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1( ) / ( )i i i

d
z z z h

dx
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To use the finite difference approximation, divide the time span of simulation into tN  

fine steps and the depth of skin into xN  finite segments. 

 tjxiTT jiji  ,,,  

where xNx /1 , ts NTt / , xix  , tjt  , and xtv  / . The thermal wave 

equation (5) can be discretized by: 
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The boundary condition and initial condition (6) can be discretized as 

  000 1,0,,,1,0  iijNxjj TTTxtiFTT     (18) 

 

3.1 Comparing the Simulation Results by Different Methods  

 

The solutions of  txT ,  can be calculated by analytical solution (10), sampled-data 

formulation (16), and finite difference method (18) in MATLAB (simulation software). Fig. 2 

shows the temperature distribution prediction of human skin with a constant heat flux 

(
2/2.83 mkWq  ) on skin surface. 

Consider the burn injury problems of human skin, the irradiation time of high-energy laser 

beam on the skin surface cannot be too long. In this study, the heating time is less than 3 seconds. 

In Fig. 2, although these curves of temperature distribution by three approaches have some 
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differences, the trend of diagram is consistent. There is a larger difference in the initial heating 

stage, with extending the heating time; the simulation results of three approaches will be gradually 

close. At the initial heating stage within 1.5 seconds, the tissue temperature has a hysteresis 

reaction, and then took an instantaneous jump. This phenomenon agrees with the results in 

References [12, 36]. 

 

 
Fig. 2 The comparing figure of skin temperature for a constant heat flux 

(
2/2.83 mkWq  ) on skin surface by using Sampled-Data Formulation (SDF),  

Finite Difference Method (FDM), and Analytical Solution (Anal. Sol.) 

 

 

Because the thickness of skin is thin, due to software limitations, the x  cannot too 

small when the variable x is segmented in space by using finite difference method, otherwise the 

results have a much larger different (in this paper, the x is 10
-6

 m). Similarly, the iteration number 

n  cannot be taken too small in analytical solution, otherwise the correct figures cannot be gotten 

(in this paper, the 1000isn ). In any case, the simulation results of the above two methods will 

exhibit oscillation pattern. Nevertheless, applying sampled-data formulation method, the 

oscillation in the figure can be eliminated if the value of N  is over 100.  
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3.2 Comparing the Simulation Results by Different Methods 

 

In the problems of laser heating of human skin, heating duration and characteristic time 

are the most important physical properties.  

Fig. 3 shows the temperature distribution prediction of human skin for a constant heat flux 

(
2/2.83 mkWq  ), a constant characteristic time ( sec20 ) and different heating durations 

( sec3,2,1ts ) by using sampled-data formulation. In Figure 3, with extending the heating 

duration, the temperature of human skin is increase. Consider burn injury problems of human skin, 

the temperature cannot be over 44oC (Torvi and Dale 1994), thus, the heating duration must be 

less than 1 second. Controlling the heating duration, it can be avoided human skin burning down 

or necrotic, that is to say, the burn injury problems of human skin can be therefore solved. 

 
Fig. 3 The comparing figure of skin temperature for different heating times  

by using Sampled-Data Formulation (SDF) 

 

 

Fig. 4 shows the temperature distribution prediction of human skin for a constant heating 

duration( sec3ts ) and different characteristic time ( sec20,10,5,1 ) by using the sampled 

-data formulation. In Figure 4, controlling the characteristic time, it will be demonstrated several 

phenomena: First, the characteristic time will cause a time delay for heat response, with extending 

the characteristic time, the time delay is more obvious. Second, the highest skin temperature is 

decrease with extending the characteristic time. Third, the skin temperature predict have 

significant difference by different characteristic time in the initial stage. With extending the time, 

the temperature will be gradually close.  

These results indicate the characteristic time is an important parameter under the 

conditions of instantaneous high-flux heating. When the characteristic time is small or reaches 

zero, the results of human skin temperature by thermal wave equation will be very close by Pennes 

equation [31]. (as the blue curve shown in Figure 4)  
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Fig. 4 The comparing figure of skin temperature for different tau values  

by using Sampled-Data Formulation (SDF) 

 

In summary, the simulation results by using the sampled-data formulation can be 

calculated more quickly and accurately than by using the finite difference method and the 

analytical solution. And it has several features: 

1. Discrete-time control law: The largest difference of the sampled-data formulation and 

finite difference method is the design of control laws. After the boundary control problems of 

PDEs are converted into the sampled-data control mode, many of control design methodology can 

be used to achieve our expectation. But, the numerical computation of the finite difference method 

cannot proceed until the boundary condition is set. This approach does not meet the design 

requirements of the control law.  

2. Faster computation: By finite difference method, first it generated isometric mesh first 

in x-t plane, then calculated the temperature corresponding to each grid point-by-point. In order to 

increase accuracy, it is required to divide smaller mesh. Thus, increase the amount of computation 

and the loading of memory will cause the computation time is longer and the calculation speed is 

slower, even cannot be calculated. By the sampled-data formulation, output or state feedback 

methods are applied to calculate the temperature distribution in the next time, and only calculating 

the temperature of target point (x point) , eliminating unnecessary calculations, greatly enhance the 

computational efficiency of the computer. 

 

 

4. Conclusions 

 

In this study, the finite-dimensional discrete-time control method of the sampled-data 

formulation is applied to solve the hyperbolic PDEs. The advantages of this approach: 1. The 

complex partial differential equations can be solved quickly. 2. The time is segmented and 

converted into a modal equation. The boundary control problem can be solved effectively. 3. 

Different physical properties can be selected as the input control term. This approach is applied to 

solve the engineering problems in view of control. It is an innovative, effective and widely applied 

methodology. In solving the bioheat transfer problems, it can directly control the maximum 

irradiation temperature of laser on skin tissue, and the time of laser irradiation or the given energy 

can be derived. This formulation is a reversed heat transfer algorithm that is simply, fast and safe. 

The results will be applied in cosmetic laser surgery that can estimate the thermal parameters of 

non-invasive thermal diagnostics, thermal therapy and cryosurgery. 
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