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In this study the effects of nickel additions in improving the mechanical properties and 
microstructure for high-strength aluminum alloys (AA7075) produced by semi-direct chill 
casting were investigated. Aluminum alloys were homogenized at different temperatures, 
aged at 120 °C for 24 h (T6), and retrogressed at 180 °C for 30 min and then re-aged at 
120 °C for 24 h (RRA). The results of the microstructural analysis showed that adding 
nickel to aluminum alloy led to form nickel-rich dispersoid particles, such as Al7Cu4Ni, 
Al4Ni3, Al75Ni10Fe15, Al3Ni2, and Al50Mg48Ni7. These provided particles strengthening of 
dispersion and fine-grain that led to prevent the recrystallization besides restricted the 
grain growth. The mechanical properties of the alloys were improved by the strengthened 
dispersoid particles and precipitation of the matrix base alloy. The highest ultimate tensile 
strength and Vickers hardness of aluminum alloy containing nickel after the retrogression 
and re-aging treatment were about 400 MPa and 225 HV, respectively. Microstructure 
characterization of the alloys were carried out using optical microscopy (OM), scanning 
electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD).   
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1. Introduction 
 
Al-Zn-Mg-Cu aluminum alloys have been studied by many researchers because of their 

suitable properties and tremendous applications, especially in the aviation and aerospace industries 
[1].  

High-strength aluminum alloys (7xxx) are popular because of their excellent properties, 
such as high tensile strength, excellent formability, and satisfactory corrosion resistance through 
heat treatments. The retrogression and re-aging (RRA) is considered one of the most important the 
heat treatments to produce materials with higher mechanical strength and stress corrosion than 
aging at T6 temper [2, 3]. The microstructural properties of aluminum–zinc–magnesium–copper 
alloys after the RRA treatment have been investigated. Typically, the eutectic structures of alloys 
consist of α-Al and MgZn2. Several other phases such as S-Al2CuMg, T-Al2Mg3Zn3, and Al2Cu are 
formed by solidifying aluminum alloys (Al-Zn-Mg-Cu) [4, 5]. The zinc–magnesium ratio 
significantly affects the formation of the MgZn2 phase. High of zinc–magnesium ratio increases 
the formation other compounds of MgZn2 that strengthen the alloys after heat treatments. Different 
nucleation agents, such as zirconium (Zr), titanium (Ti), boron (B), and scandium (Sc) have been 
used in aluminum alloys (7xxx); Ti coupled with B provides the finest microstructure for alloys 
[6,7]. Various studies have investigated the effect of nickel on the microstructure and mechanical 
properties of aluminum alloys. Compton et al. [8] found that adding nickel into pure aluminum 
forms Al3Ni through eutectic reaction and increases alloy hardness. This intermetallic phase is also 
common in Al-Si-Ni alloys. Yang and Boyuk [9, 10] discovered that blending nickel into 
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aluminum–silicon alloys forms Al3Ni in addition to Al7Cu4Ni and Al9FeNi during solidification. 
For aluminum–silicon–nickel alloys, a nickel-rich dispersion phase insoluble at high temperature 
improves mechanical properties for applications in high temperatures [11–13]. Moreover, 
influence addition of nickel on the mechanical properties of Al-Zn-Mg-Cu alloys was investigated 
using numerous techniques such as; Ingot metallurgy (IM) and rapid solidification (RS).  

Shen et al. and Wu et al. [14, 15] found that more semi-coherent and incoherent η′ and η 
phases in the microstructure of aluminum alloys Al-Zn-Mg-Cu-Ni produced by rapid solidification 
it's increased hardness after the aging. So a detailed understanding of the microstructural 
characteristics of Al-Zn-Mg-Cu containing Ni produced by semi-direct chill casting is still lacking. 
The purpose of this study aims to determine the effects of nickel additives on microstructural 
evolutions and mechanical properties of AA7075 aluminum alloys (produced by semi-direct chill 
casting) after aging and RRA.  

 
 
2. Experimental procedures  
 
2.1. Research Material 
 
The present study was carried out on AA7075-O aluminum alloy slabs provided by 

ALCAN GLOBAL AEROSPACE. The slabs were 13 mm thick and 20 mm wide. Nickel of 99% 
purity as additives was provided by Merck KGaA. The nominal compositions of the studied alloys 
are listed in Table 1. The terms “Base alloy” and “Alloy A” refer to as received alloy and alloy 
with 0.1 wt. % Ni respectively. The chemical composition analysis was carried out using the arc-
spark spectrometer (SPECTROMA).  

 
Table 1: The chemical composition of studied alloys (in wt. %). 

 
No. Si Fe Cu Mg Cr Ni Zn Ti Al 

Base alloy 0.066 0.24 1.8 2.87 0.18 - 6.68 0.03 balance 

Alloy A 0.06 0.22 1.7 2.75 0.18 0.1 6.68 0.028 balance 

  
 

Alloys were re-melted in a graphite crucible at 850°C (1123 K) in electrical resistance 

furnace (with accuracy of +/-5°C). The samples were produced by a semi–direct chilling (DC) 
casting process proceeded in iron steel mold of (150 l x 30 w x 20 h). The mold was preheated to 
250°C prior to casting process. The casting speed about 150 mm/min, water flow rate was about 45 
l/min and cooling rate of –280⁰C /sec. The alloys were inverted and remelted three times to ensure 
complete mixing. After the casting; homogenizing treatments conducted for alloys according to 
step No.1 in Table 2, followed by quenching in cold water immediately after each step of the 
homogenizing treatments. Thereafter ageing at T6 temper then the retrogression and re-aging 
(RRA) process their detailed in Table 2; quenching in cold water come after each treat. 
 

Table 2: The homogenizing and heat treatment steps for alloys studied 
 

No.  Type Description of treatment 

1 Homogenizing 450°C for 2 h+470°C for 24 h+480°C for ½ h 
2 Ageing (T6) 120°C for 24 h 
3 Retrogression and reaging 

(RRA) 
120°C for 24 h + 180°C for ½h + 120°C for 24h 
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Fig. 7 shows the different X-ray diffraction (XRD) patterns of the base alloy after 

quenching, T6 temper , and the RRA treatment. The as-quenched base alloy (c) was primarily 
composed of -(Al), and the secondary phases were T-AlMg4Zn11, S-Al2CuMg, - MgZn2, -
Mg2Zn11, and Al23CuFe4, consistent with [20]. The generally accepted precipitation sequences for 
7000 series aluminum alloys are as follows: [21-24]: supersaturated solid solution  coherent 
stable Guinier–Preston (GP) zones semi-coherent intermediate (Mg2Zn11) phase incoherent 
stable (MgZn2) or T(AlMg4Zn11) phase. Metastable phase was the primary precipitation 
hardening phase of these alloys. The primary precipitations in the matrix were the GP zones and 
(Mg2Zn11) phase after aging at 120 °C for 24 h.  

The XRD plots in Fig. 7(b); shows that after T6 temper, the base alloy sample exhibited 
more significant -MgZn2 and -Mg2Zn11 phases, which dissolved during homogenization and 
then precipitated during aging at T6. No obvious diffraction peak was observed in the Al23CuFe4 
phase.  

The different X-ray diffraction (XRD) findings for the sample after the RRA process (Fig. 
7a) indicated high-intensity diffraction peaks in the MgZn2 and Mg2Zn11 phases. The primary 
precipitation phases in the matrix (the fine and dispersive GP zone and  phase) underwent the 
RRA treatment after its step first (120°C for 24 h) aging. During retrogression, the GP zones 
dissolved into the (Mg2Zn11) or -MgZn2 phases. With prolonged retrogression, the undissolved 
GP zones transformed into the  phase and thus formed numerous GP zones and  phases that 
were dissolved in the early stages of another round of retrogression [25, 26]. Finally, abundant 
nuclei that promote the re-precipitation of the GP zones and  phase in the re-aging step were 
mounted according to the XRD results. The XRD analysis results were consistent with the EDX 
results. 

 

 
 

Fig. 8: (a) SEM and (b) EDX analysis of as-quenched alloy A sample. 
 

The SEM in Fig. 8 (a) shows the microstructure of the as-quenched alloy A sample. The 
dark areas denote the primary solid solution as indicated in the matrix of the labeled region; the 
EDX scan points reveal chemical composition close to the T-Al5Mg11Zn4, S-Al2CuMg, -MgZn2, 



1628 
 
-Mg2Zn11, and AlCuFe phases (Fig. 8b). The bright areas denote the non-equilibrium 
solidification eutectic system between grains (Fig. 8c). Gray particles were observed (encircled 
region (p), Fig. 8d), revealing stoichiometry close to the T-Al5Mg11Zn4, S-Al2CuMg, -MgZn2, -
Mg2Zn11, γ-Al-Cu-Ni, and Al-Ni-Fe phases.  

 

 
 

Fig. 9: (a) SEM and (b) EDX analysis of alloy A sample after T6 temper. 
 
 

Fig. 9(a) shows an SEM of the alloy A sample after T6 temper. The encircled region 
shows a bacillary shape (Fig. 9c). Figure 9(b) reveals chemical composition close to the T-
Al5Mg11Zn4, S-Al2CuMg, Al7Cu4Ni, Al50Mg48Ni7, Al4Ni3, Al3Ni2, MgZn2, and Mg2Zn11 phases. 
Figure 9(a) shows the prevalence of Ni-rich dispersion particles. 
 

 
 

Fig. 10: (a) SEM and (b) EDX analysis of alloy A sample after RRA. 
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Figure 10 shows the microstructure of the alloy A sample after the RRA process. The 

bright areas denote newly formed phases in addition to the dispersion particles. Figure 10(a) shows 
the numerous dispersion particles (see Fig. 10c for highly magnified SEM). Figure 10(b) reveals 
similar stoichiometry to that of Al4Ni3, Al3Ni2, Al50Mg48Ni7, T-Al5Mg11Zn4, S-Al2CuMg, 
Al7Cu4Ni, MgZn2, and Mg2Zn11. During RRA, the secondary phase particles were further 
dissolved into the matrix, and the solubility limit of the nickel additives can be extended with dual 
solution treatment, consistent with Yuan et al. [25].  

 
 

Fig. 11: XRD plots for alloy A after quenching, T6 heat treatment, and RRA. 
 
 

The XRD analysis results for the alloy A samples are shown in Figs. 11(a)–11(c) (RRA, 
T6, and as-quenched, respectively). The patterns of the as-quenched alloy A sample confirm that 
the primary eutectic system mainly consisted of (Al), solid solution, and intermetallic compounds 
(i.e., T-Al5Mg11Zn4, S-Al2CuMg, Al7Cu4Ni, Al50Mg48Ni7, Mg2Zn, Mg2Zn11, Al4Ni3, and Al3Ni2). 
The solubility limits of nickel can be extended to form a supersaturated solid solution with the 
aluminum matrix produced by chill casting and thus form nickel dispersion particles within the 
aluminum alloy [26]. This result was confirmed by the SEM/EDX and XRD results. Figure 11(b) 
shows the XRD plots for the alloy A sample after T6 temper and indicates the existence of the 
Al75Ni10Fe15 phase in addition to the phases in the as-quenched sample (Al50Mg48Ni7, Mg2Zn, 
Mg2Zn11, Al4Ni3, and Al3Ni2). These dispersive phases had high peaks because of the intensive 
dissolution of the alloying elements with the nickel additives produced by the homogenization and 
subsequent heat treatments.  

On the other hand, Li et al. [27] found that adding nickel to aluminum alloys Al-Zn-Mg 
suppresses the formation of the MgZn2 phase in the matrix. These findings contradict the present 
results according to EDX and XRD analysis (i.e., numerous MgZn2 phases).  

Figure 11(a) shows the XRD plots for the alloy A sample after the RRA treatments. The 
intensity of the diffraction peaks of phases Al4Ni3, Al75Ni10Fe15, Al3Ni2, Al50Mg48Ni7, MgZn2, and 
Mg2Zn11 increased this because the effects of steps the retrogression and reaging as is detailed 
above (Fig.10). 
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addition of nickel additives in alloy A). The strengthening mechanism of aging at T6 (120 °C for 
24 h) for the base alloy is attributed to precipitation hardening; that is, the effects of the GP zones 
were consistent with the nano-sized  metastable precipitates. These precipitates act as pinning 
points that impede dislocation [23–26]. The XRD and EDX results revealed the existence of  and 
 phases. The YS and UTS of the base alloy sample after RRA significantly improved compared 
with those of the T6 temper specimens. This improvement is attributed to the partial dissolution of 
the pre-existing GP zones and  phase. The GP zones can act as nucleation sites for  particles, 
and the remaining  phase constantly grew during RRA. After the RRA, the solute atoms 
dissolved in the matrix precipitated again and produced smaller GP zones and  phase. Therefore, 
(MgZn2) and (Mg2Zn11) phases were more significantly augmented by RRA than by the T6 
process. The strengthening mechanisms for nickel microalloying additions to Al-Zn- Mg-Cu alloys 
can primarily be classified into precipitation strengthening by the alloying element for the base 
alloy and dispersion and fine-grain strengthening by Ni-rich dispersoid particles. Precipitation was 
strengthened by the heat treatment. Dispersion can be described as dislocations inhibited by Ni 
dispersoid particles in the slipping planes. The dispersoid phase particles were looped, bypassed, 
and/or sheared by dislocation through the Orowan mechanism. The stress required to move a 
dislocation around a particle is YS, which is increased by dispersion strengthening. Aside from the 
fine-grain strengthening, Ni-rich dispersoid particles restrict recrystallization and inhibit grain 
growth (Figs. 2 and 3b). This outcome increases YS. 

 
 
5. Conclusions  
 
The microstructure of the base alloy contained Al5Mg11Zn4, Al2CuMg, Mg2Zn11, and 

MgZn2 phases. Adding nickel into the base alloy formed new dispersion particles, such as 
Al7Cu4Ni, Al4Ni3, Al75Ni10Fe15, Al3Ni2, and Al50Mg48Ni7 particles. 

RRA improved the YS of the base alloy more significantly than the T6 temper and 
significantly increased UTS (i.e., 380 MPa; Vickers hardness = 210).   

RRA increased the YS of alloy A more significantly than it did the YS of the base alloy.   
The YS of alloy A was increased by the dispersion phase particles (Al7Cu4Ni, Al4Ni3, 

Al75Ni10Fe15, Al3Ni2, and Al50Mg48Ni7), which restricted recrystallization and grain growth. 
The strengthening mechanisms for the two alloys were precipitation related to the alloying 

elements for the base alloy and the dispersion addition to the fine grains by the Ni-rich dispersoid 
particles. 
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