# OMEGA AND SADHANA POLYNOMIALS OF AN IFANITE FAMILY OF FULLERENES 

MODJTABA GHORBANI, MARYAM JALALI *<br>Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I. R. Iran

The Sadhana polynomial is defined as $\operatorname{Sd}(G, x)=\sum_{c} m(G, c) \cdot x^{|E|-c}$, where $m(G, c)$ is the number of strips of length $c$. This new polynomial has been defined to evaluate the Sadhana index of a molecular graph. The relation between this new polynomial and omega polynomial is investigated. In particular, a method of computing Sadhana polynomial and then Sadhana index for for an infinite family of fullerene has been described.
(Received February 17, 2009; accepted March 15, 2009)
Keywords: Omega Polynomial, Sadhana Polynomial, Fullerene.

## 1. Introduction

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. Fullerenes $\mathrm{C}_{n}$ can be drawn for $n=20$ and for all even $n \geq 24$. They have $n$ carbon atoms, $3 n / 2$ bonds, 12 pentagonal and $n / 2-10$ hexagonal faces. The most important member of the family of fullerenes is $\mathrm{C}_{60}{ }^{1,2}$

Let $G=(V, E)$ be a connected bipartite graph with the vertex set $V=V(G)$ and the edge set $E=E(G)$, without loops and multiple edges. In 1988, Hosoya ${ }^{3}$ introduced what he termed the Wiener (and latter called Hosoya) polynomial of a graph as $H(G, x)=\sum_{1<k<l} m(G, k) \cdot x^{k}$, where $\mathrm{m}(G, k)$ is the number of pairs of vertices in $G$ that are distance $k$ apart, and $l$ is the maximum value of $k$ or the diameter of $G$. Sagan, Yeh and Zhang ${ }^{4}$ produced a treatment apparently independent of Hosoya's. Perhaps the most interesting property of $H(G, x)$ is the first derivative, evaluated at $x=1$, which equals the Wiener index: $H^{\prime}(G, 1)=W(G)$.

Let G be an arbitrary graph. Two edges $e=u v$ and $f=x y$ of $G$ are called codistant (briefly: $e c o f$ ) if they obey the topologically parallel edges relation. For some edges of a connected graph $G$ there are the following relations satisfied ${ }^{4,5}$ :

$$
\begin{gathered}
e \operatorname{co} e \\
e \operatorname{co} f \Leftrightarrow f \cos e \\
e \cos , f \operatorname{coh} \Rightarrow e \operatorname{co} h
\end{gathered}
$$

though the last relation is not always valid.
Set $C(e):=\{f \in E(G) \mid f$ co $e\}$. If the relation "co" is transitive on $C(e)$ then $C(e)$ is called an orthogonal cut "oc" of the graph $G$. The graph $G$ is called co-graph if and only if the edge set $\mathrm{E}(\mathrm{G})$ is the union of disjoint orthogonal cuts. The Omega polynomial $\Omega(\mathrm{G}, \mathrm{x})$ for counting qoc strips in G was defined by Diudea as $\Omega(\mathrm{G}, \mathrm{x})=\Sigma_{\mathrm{c}} \mathrm{m}(\mathrm{G}, \mathrm{c}) \times x^{\mathrm{c}}$, with $\mathrm{m}(\mathrm{G}, \mathrm{c})$ being the number of strips of length $c$. The summation runs up to the maximum length of qoc strips in G . If G is bipartite, then a qoc starts and ends out of G and so $\Omega(\mathrm{G}, 1)=r / 2$, in which $r$ is the number of edges in out of $\mathrm{G}^{6-8}$. The Sadhana index $\operatorname{Sd}(\mathrm{G})$ for counting qoc strips in G was defined by Khadikar et. al. ${ }^{9,10}$ as $\operatorname{Sd}(\mathrm{G})=\sum_{\mathrm{c}} \mathrm{m}(\mathrm{G}, \mathrm{c})(|\mathrm{E}(\mathrm{G})|-c)$, where $\mathrm{m}(\mathrm{G}, \mathrm{c})$ is the number of strips of length $c$. We now

[^0]define the Sadhana polynomial of a graph $G$ as $\operatorname{Sd}(G, x)=\sum_{c} m(G, c) \cdot x^{|E|-c}$. By definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing $x^{\mathrm{c}}$ with $x^{\mathrm{EL\mid}-\mathrm{c}}$ in omega polynomial. Then the Sadhana index will be the first derivative of $\operatorname{Sd}(\mathrm{G}, \mathrm{x})$ evaluated at $x=1$.
Herein, our notation is standard and taken from the standard book of graph theory ${ }^{11-16}$. The aim of this study is to compute the Sadhana polynomial and then Sadhana index of an infinite family of fullerenes.

## 2. Main results and discussion

The Sadhana polynomial of an infinite family of fullerenes was computed as described above.


Fig. 1. (a) The Fullerene Graph $\mathrm{C}_{20}$. (b) The Fullerene Graph $\mathrm{C}_{30}$.

Example 1. Suppose $C_{20}$ denotes the fullerene graph on 20 vertices, see Figure 1(a). Then $\Omega\left(C_{20}, x\right)=30 x$ and so, $\operatorname{Sd}\left(C_{20}, x\right)=30 x^{29}$.

Example 2. Suppose $C_{30}$ denotes the fullerene graph on 30 vertices, see Figure 1(b). Then $\Omega(G, x)=20 x+10 x^{2}+x^{5}$ and so, $S d(G, x)=20 x^{44}+10 x^{43}+x^{40}$.

Example 3. Consider table 3. In this table we compute the omega polynomial for some fullerene graphs ${ }^{17}$.

Theorem 1. Suppose $K_{n}$ denotes the complete graph on $n$ vertices. Then $\Omega\left(K_{n}, x\right)=\frac{n(n-1)}{2} x$ and so $S d\left(K_{n}, x\right)=\frac{n(n-1)}{2} x^{\frac{n(n-3)}{2}}$.

Proof. For every $e \in E\left(K_{n}\right), C(e)=1$ and by using definition of Omega polynomial the proof is obvious.

Theorem 2. Suppose T is a tree on n vertices. Then $\Omega(T, x)=(n-1) x$ and so, $S d(T, x)=(n-1) x^{n-2}$.

Theorem 3. Consider the fullerene graphs $\mathrm{C}_{10 \mathrm{n}, \mathrm{n}} \mathrm{n} \geq 10$ (Figures 2,3). Then the Omega and Sadhana polynomials of $\mathrm{C}_{10 \mathrm{n}}$ are computed as follows:

$$
\begin{aligned}
& \Omega\left(C_{10 n}, x\right)= \begin{cases}10 x^{3}+10 x^{\frac{n}{2}}+10 x^{n-3} & 2 \mid n \\
10 x^{3}+5 x^{\frac{n-3}{2}}+5 x^{\frac{n+3}{2}}+10 x^{n-3} & 2 \nmid n\end{cases} \\
& S d\left(C_{10 n}, x\right)= \begin{cases}10 x^{15 n-3}+10 x^{\frac{29 n}{2}}+10 x^{14 n+3} & 2 \mid n \\
10 x^{15 n-3}+5 x^{\frac{29 n+3}{2}}+5 x^{\frac{29 n-3}{2}}+10 x^{14 n+3} & 2 \nmid n\end{cases}
\end{aligned}
$$

Proof. To compute the omega polynomial of $\mathrm{C}_{10 \mathrm{n}}$, it is enough to calculate $\mathrm{C}(e)$ for every e in $\mathrm{E}(\mathrm{G})$. By using Table 1 and Table 2 the proof is complete.

Table 1. The number of co-distant edges, when $n$ is even.

| Type of Edges | Number of co-distant edges | No |
| :---: | :---: | :---: |
| $\mathrm{e}_{1}$ | 3 | 10 |
| $\mathrm{e}_{2}$ | $\frac{n}{2}$ | 10 |
| $\mathrm{e}_{3}$ | $\mathrm{n}-3$ | 10 |

Table 2. The number of co-distant edges, when $n$ is odd.


Fig. 2. The Fullerene Graph $C_{10 n}$ ( $n$ is odd).


Fig. 3. The Fullerene Graph $C_{10 n}$ ( $n$ is even).

Table 3. Omega polynomial for some fullerene graphs.

| $\mathrm{C}_{20}$ | $\boldsymbol{C}_{30}$ | $\mathrm{C}_{28}$ | $\mathrm{C}_{26}$ | $\mathrm{C}_{24}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\Omega(\mathrm{X})=\mathrm{X}^{30}$ | $\Omega(\mathrm{X})=\mathrm{x}^{5}+8 \mathrm{x}^{2}+24 \mathrm{x}$ | $\Omega(\mathrm{X})=24 \mathrm{x}+9 \mathrm{x}^{2}$ | $\Omega(\mathrm{X})=30 \mathrm{x}+6 \mathrm{x}^{2}$ | $\Omega(\mathrm{X})=30 \mathrm{X}+3 \mathrm{X}^{2}$ |
| $C_{32}$ | $C_{36}$ | $\mathrm{C}_{34}$ | $C_{32}$ | $\mathrm{C}_{32}$ |
|  |  |  |  |  |
| $\begin{aligned} & \Omega(\mathrm{X})=11 \mathrm{x}^{2}+2 \mathrm{x}^{3}+20 \\ & \mathrm{x} \end{aligned}$ | $\Omega(\mathrm{X})=6 \mathrm{x}^{3}+9 \mathrm{x}^{2}+18 \mathrm{x}$ | $\begin{aligned} & \Omega(\mathrm{X})=18 \mathrm{x}+12 \mathrm{x}^{2}+3 \\ & \mathrm{x}^{3} \\ & \hline \end{aligned}$ | $\begin{aligned} & \Omega(\mathrm{X})=4 \mathrm{x}^{3}+7 \mathrm{x}^{2}+2 \\ & 2 \mathrm{x} \end{aligned}$ | $\begin{aligned} & \Omega(\mathrm{X})=4 \mathrm{x}^{3}+7 \mathrm{x}^{2}+2 \\ & 2 \mathrm{x} \end{aligned}$ |
| $\mathrm{C}_{38}$ | $\mathrm{C}_{38}$ | $C_{36}$ | $C_{36}$ | $\mathrm{C}_{36}$ |
|  |  |  |  |  |
| $\begin{aligned} & \Omega(\mathrm{X})=2 \mathrm{x}^{4}+3 \mathrm{x}^{3}+12 \mathrm{x} \\ & { }^{2}+16 \mathrm{x} \end{aligned}$ | $\begin{aligned} & \Omega(\mathrm{X})=\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+12 \\ & \mathrm{x}^{2}+18 \mathrm{x} \\ & \hline \end{aligned}$ | $\Omega(\mathrm{X})=\mathrm{x}^{6}+15 \mathrm{x}^{2}+18 \mathrm{x}$ | $\begin{aligned} & \Omega(\mathrm{X})=2 \mathrm{x}^{5}+\mathrm{x}^{3}+11 \\ & \mathrm{x}^{2}+19 \mathrm{x} \end{aligned}$ | $\begin{aligned} & \Omega(\mathrm{X})=\mathrm{x}^{5}+\mathrm{x}^{3}+12 \mathrm{x}^{2} \\ & +22 \mathrm{x} \end{aligned}$ |
| $\mathrm{C}_{40}$ | $\mathrm{C}_{40}$ | $\mathrm{C}_{40}$ | $\mathrm{C}_{40}$ | $\mathrm{C}_{40}$ |
|  |  |  |  |  |
| $\begin{aligned} \Omega(\mathrm{X})= & 2 \mathrm{x}^{5}+8 \mathrm{x}^{3}+2 \mathrm{x}^{2} \\ & +22 \mathrm{x} \end{aligned}$ | $\begin{gathered} \Omega(\mathrm{X})=8 \mathrm{x}^{3}+11 \mathrm{x}^{2}+14 \\ \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{6}+6 \mathrm{x}^{3}+\mathrm{x}^{2}+ \\ 16 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=15 \mathrm{x}+12 \mathrm{x}^{2}+ \\ 5 \mathrm{x}^{3}+\mathrm{x}^{6} \end{gathered}$ | $\begin{aligned} \Omega(\mathrm{X})= & =4 \mathrm{x}^{2}+4 \mathrm{x}^{4} 4 \mathrm{x}^{3} \\ & +20 \mathrm{x} \end{aligned}$ |
| $\mathrm{C}_{44}$ | $\mathrm{C}_{44}$ | $\mathrm{C}_{44}$ | $\mathrm{C}_{42}$ | $\mathrm{C}_{40}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=4 \mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+ \\ 12 \mathrm{x}^{2}+15 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{7}+\mathrm{x}^{5}+4 \mathrm{x}^{3}+ \\ 9 \mathrm{x}^{2}+17 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{4}+3 \mathrm{x}^{3}+ \\ 12 \mathrm{x}^{2}+13 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{4}+6 \mathrm{x}^{3}+ \\ 12 \mathrm{x}^{2}+13 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{4}+12 \mathrm{x}^{2}+ \\ 16 \mathrm{x} \\ \hline \end{gathered}$ |
| $\mathrm{C}_{44}$ | $C_{70}$ | $\mathrm{C}_{44}$ | $\mathrm{C}_{44}$ | $\mathrm{C}_{44}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=4 \mathrm{x}^{4}+4 \mathrm{x}^{3}+13 \mathrm{x} \\ { }_{2}+12 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{5}+10 \mathrm{x}^{4}+10 \\ \mathrm{x}^{3}+5 \mathrm{x}^{2} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=4 \mathrm{x}^{5}+2 \mathrm{x}^{4}+5 \mathrm{x}^{3} \\ \\ +\mathrm{x}^{2}+21 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{4}+4 \mathrm{x}^{3}+1 \\ 0 \mathrm{x}^{2}+14 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{6}+5 \mathrm{x}^{4}+13 \\ \mathrm{x}^{2}+14 \mathrm{x} \end{gathered}$ |
| $\mathrm{C}_{48}$ | $\mathrm{C}_{48}$ | $\mathrm{C}_{48}$ | $\mathrm{C}_{48}$ | $\mathrm{C}_{48}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{4}+11 \mathrm{x}^{3}+2 \mathrm{x} \\ 2+15 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(X)=2 x^{6}+12 x^{3}+3 x \\ 2+18 x \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{6}+3 \mathrm{x}^{4}+11 \mathrm{x}^{3} \\ +2 \mathrm{x}^{2}+17 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{5}+6 \mathrm{x}^{4}+\mathrm{x}^{3} \\ \\ +11 \mathrm{x}^{2}+13 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{4}+8 \mathrm{x}^{3}+8 \\ \mathrm{x}^{2}+12 \mathrm{x} \end{gathered}$ |


| $C_{50}$ | $C_{50}$ | $C_{50}$ | $C_{50}$ | $C_{50}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x} \\ 5+3 \mathrm{x}^{4}+\mathrm{x}^{3}+14 \mathrm{x}^{2} \\ +12 \mathrm{x} \end{gathered}$ | $\begin{aligned} \Omega(X)= & 7 x^{4} 4 x^{3}+13 x^{2} \\ & +9 x \end{aligned}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{6}+3 \mathrm{x}^{5}+\mathrm{x}^{4}+ \\ 5 \mathrm{x}^{3}+7 \mathrm{x}^{2}+15 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(X)=x^{6}+2 x^{5}+2 x \\ 4+4 x^{3}+21 x \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=9 \mathrm{x}^{3}+12 \mathrm{x}^{2}+ \\ 4 \mathrm{x}^{4}+8 \mathrm{x} \end{gathered}$ |
| $C_{60}$ | $C_{52}$ | $C_{52}$ | $C_{52}$ | $C_{52}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{8}+10 \mathrm{x}^{3} \\ +14 \mathrm{x}^{2}+8 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{8}+2 \mathrm{x}^{4}+7 \mathrm{x}^{3} \\ \\ +11 \mathrm{x}^{2}+11 \mathrm{x} \end{gathered}$ | $\begin{aligned} \Omega(\mathrm{X}) & =2 \mathrm{x}^{6}+4 \mathrm{x}^{4}+4 \mathrm{x}^{3} \\ & +4 \mathrm{x}^{2}+14 \mathrm{x} \end{aligned}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{8}+6 \mathrm{x}^{4}+2 \mathrm{x} \\ 3+15 \mathrm{x}^{2}+10 \mathrm{x} \end{gathered}$ | $\begin{aligned} & \Omega(\mathrm{X})=2 \mathrm{x}^{7}+4 \mathrm{x}^{4}+2 \\ & \mathrm{x}^{5}+\mathrm{x}^{3}+11 \mathrm{x}^{2}+12 \mathrm{x} \end{aligned}$ |
| $C_{52}$ | $C_{52}$ | $C_{52}$ | $C_{52}$ | $C_{52}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{8}+7 \mathrm{x}^{4}+ \\ 2 \mathrm{x}^{3}+11 \mathrm{x}^{2}+11 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{7}+2 \mathrm{x}^{5}+3 \mathrm{x}^{4} \\ +3 \mathrm{x}^{3}+10 \mathrm{x}^{2}+13 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{8}+2 \mathrm{x}^{4}+7 \mathrm{x}^{3} \\ \\ +11 \mathrm{x}^{2}+11 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{7}+4 \mathrm{x}^{4}+ \\ 15 \mathrm{x}^{2}+10 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{20}+3 \mathrm{x}^{4}+\mathrm{x}^{3} \\ +15 \mathrm{x}^{2}+13 \mathrm{x} \end{gathered}$ |
| $C_{52}$ | $C_{52}$ | $C_{52}$ | $C_{54}$ | $\mathrm{C}_{54}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=9 \mathrm{x}^{4}+3 \mathrm{x}^{3} \\ +12 \mathrm{x}^{2}+9 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{6}+2 \mathrm{x}^{5}+2 \mathrm{x}^{4} \\ +2 \mathrm{x}^{3}+15 \mathrm{x}^{2}+9 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{18}+5 \mathrm{x}^{4}+6 \mathrm{x}^{3} \\ \\ +4 \mathrm{x}^{2}+17 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=4 \mathrm{x}^{6}+2 \mathrm{x}^{5}+8 \\ \mathrm{x}^{3}+7 \mathrm{x}^{2}+12 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{5}+6 \mathrm{x}^{4}+2 \\ \mathrm{x}^{3}+9 \mathrm{x}^{2}+11 \mathrm{x} \\ \hline \end{gathered}$ |
| $C_{20}$ | $C_{20}$ | $C_{20}$ | $C_{20}$ | $C_{20}$ |
|  |  |  |  |  |
| $\begin{aligned} & \Omega(\mathrm{X})=3 \mathrm{x}^{7}+2 \mathrm{x}^{5} \\ & +6 \mathrm{x}^{3}+13 \mathrm{x}^{2}+9 \mathrm{x} \end{aligned}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{6}+\mathrm{x}^{5}+5 \mathrm{x}^{4}+ \\ 5 \mathrm{x}^{3}+7 \mathrm{x}^{2}+13 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{5}+11 \mathrm{x}^{4}+2 \mathrm{x} \\ 3+6 \mathrm{x}^{2}+12 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=5 \mathrm{x}^{7}+\mathrm{x}^{4}+8 \mathrm{x} \\ 3+2 \mathrm{x}^{2}+17 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{6}+6 \mathrm{x}^{5}+\mathrm{x} \\ 4+4 \mathrm{x}^{3}+6 \mathrm{x}^{2}+14 \mathrm{x} \end{gathered}$ |
| $C_{20}$ | $C_{20}$ | $C_{20}$ | $C_{20}$ | $C_{60}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{8}+5 \mathrm{x}^{3} \\ +18 \mathrm{x}^{2}+9 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{8}+10 \mathrm{x}^{3}+8 \mathrm{x} \\ { }_{2}+14 \mathrm{x} \end{gathered}$ | $\begin{aligned} & \Omega(\mathrm{X})=7 \mathrm{x}^{5}+8 \mathrm{x}^{3}+10 \mathrm{x} \\ & 2+8 \mathrm{x} \end{aligned}$ | $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{7}+2 \mathrm{x}^{4}+17 \\ \mathrm{x}^{3}+8 \mathrm{x}^{2}+5 \mathrm{x} \end{gathered}$ | $\begin{aligned} & \Omega(\mathrm{X})=\mathrm{x}^{7}+\mathrm{x}^{6}+6 \mathrm{x}^{4} \\ & +10 \mathrm{x}^{3}+8 \mathrm{x}^{2}+7 \mathrm{x} \\ & \hline \end{aligned}$ |
| $C_{60}$ | $C_{60}$ | $C_{60}$ | $C_{60}$ | $C_{60}$ |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{6}+6 \mathrm{x}^{4}+ \\ 10 \mathrm{x}^{3}+11 \mathrm{x}^{2}+8 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{5}+5 \mathrm{x}^{4}+11 \mathrm{x} \\ 3+8 \mathrm{x}^{2}+6 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=2 \mathrm{x}^{5}+10 \mathrm{x}^{4}+6 \mathrm{x} \\ 3+7 \mathrm{x}^{2}+8 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=4 \mathrm{x}^{8}+\mathrm{x}^{6}+\mathrm{x}^{5} \\ +9 \mathrm{x}^{3}+2 \mathrm{x}^{2}+16 \mathrm{x} \\ \hline \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{6}+3 \mathrm{x}^{5}+ \\ 12 \mathrm{x}^{3}+6 \mathrm{x}^{2}+9 \mathrm{x} \end{gathered}$ |


| $\boldsymbol{C}_{60}$ | $\boldsymbol{C}_{60}$ | $\mathrm{C}_{60}$ | $\boldsymbol{C}_{60}$ | $\mathrm{C}_{80}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\begin{gathered} \Omega(\mathrm{X})=\mathrm{x}^{8}+2 \mathrm{x}^{6}+2 \mathrm{x} \\ 5+ \\ 4 \mathrm{x}^{4}+4 \mathrm{x}^{3}+12 \mathrm{x}^{2}+8 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{9}+\mathrm{x}^{7}+\mathrm{x}^{6} \\ +\mathrm{x}^{3}+20 \mathrm{x}^{2}+7 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=3 \mathrm{x}^{8}+10 \mathrm{x}^{3}+ \\ 14 \mathrm{x}^{2}+8 \mathrm{x} \end{gathered}$ | $\begin{gathered} \Omega(\mathrm{X})=25 \mathrm{x}^{3}+6 \mathrm{x}^{2} \\ \\ +3 \mathrm{x} \end{gathered}$ | $\Omega(X)=\underset{2}{6 x^{10}}+30 x$ |

## References

[1] H. W. Kroto, J. R. Heath, S. C.O’Brien, R. F. Curl, R.E. Smalley, Nature, 318, 162 (1985).
[2] H. W. Kroto, J. E., Fichier, D. E Cox, The Fulerene, Pergamon Press, New York, 1993.
[3] H.Hosoya, Discrete Appl. Math, 19, 239(1988).
[4] Sagan B. E., Yeh Y.-N. and Zhang P.: Int. J. Quantum Chem, 60, 959 (1996).
[5] P. E. John, A. E. Vizitiu, S. Cigher, and M. V. Diudea, MATCH Commun. Math. Comput. Chem, 57, 479( 2007).
[6] Diudea M V, Cigher S, Vizitiu A E, Ursu O and John P E, Croat. Chem. Acta, 79, 445 (2006).
[7] Vizitiu A E, Cigher S, Diudea M V and Florescu M S, MATCH Commun. Math. Comput. Chem., 57, 457 (2007).
[8] M. V .Diudea, Fullerenes, Nanotubes, and Carbon Nanostructures, 10, 273( 2002).
[9] Khadikar P. V, Joshi S, Bajaj A V and Mandloi D, Bioorg. Med.Chem. Lett., 14, 1187 (2004).
[10] Khadikar P. V, Agrawal V. K and Karmarkar S, Bioorg. Med. Chem., 10, 3499 (2002).
[11] A.R.Ashrafi, M.Ghorbani and M.Jalali , Indian J. Chem, 47, 535 (2008).
[12] A. R. Ashrafi, M. Ghorbani, MATCH Commun. Math. Comput. Chem. 60, 359 (2008).
[13] M. Ghorbani and A. R. Ashrafi, J. Comput. Theor. Nanosci. 3, 803 (2006).
[14] A.R. Ashrafi, M. Ghorbani and M. Jalali, Digest Journal of Nanomaterials and Biostructures , 3(4), 245 (2008).
[15] M. Ghorbani, and M. Jalali, Digest Journal of Nanomaterials and Biostructures, 3(4), 269
(2008).
[16] A. R. Ashrafi, M. Jalali, M. Ghorbani and M. V. Diudea, MATCH Commun. Math. Comput. Chem, 60(3), 905 (2008).
[17] Yu. L. Voytekhovsky and D. G. Stepenshchikov, Crystallography Reports 47(5), 720 (2002).


[^0]:    * Corresponding author: jalali6834@gmail.com

