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The PI polynomial of a molecular graph G is defined as ∑+ − )(|)(| eNGExA , where N(e) 

is the number of edges parallel to e, |)(|
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)1|)((||)(| GEGVGVA −
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goes over all edges of G. In this paper, the PI polynomial of the Armchair Polyhex 
Nanotubes and Nanotorus are computed. 
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1. Introduction  
 
Graph theory was successfully provided the chemist with a variety of very useful tools, 

namely, the topological index. A topological index is a numeric quantity from the structural graph 
of a molecule. With hundreds of topological indices one would expect that most molecules could 
be well characterized and their physicochemical properties correlated with the available 
descriptors. 

A topological index is a real number related to a graph. It must be a structural invariant, 
i.e., it is fixed by any automorphism of the graph. There are several topological indices have been 
defined and many of them have found applications as means to model chemical, pharmaceutical 
and other properties of molecules. 

The Wiener index W is the first topological index to be used in chemistry. It was 
introduced in 1947 by Harold Wiener, as the path number for characterization of alkanes, [15]. In a 
graph theoretical language, the Wiener index is equal to the count of all shortest distances in a 
graph. For a survey in this topic we encourage the reader to consult [8,15]. 

We now recall some algebraic definitions that will be used in the paper. Let G be a simple 
molecular graph without directed and multiple edges and without loops, the vertex and edge-
shapes of which are represented by V(G) and E(G), respectively. If e is an edge of G, connecting 
the vertices u and v then we write e=uv. The number of vertices of G is denoted by n. The distance 
between a pair of vertices u and v of G is denoted by d(u,v) and it is defined as the number of 
edges in a minimal path connecting the vertices u and v. We define for e=uv two quantities 
neu(e|G) and nev(e|G). neu(e|G) is the number of edges lying closer to the vertex u than the vertex v, 
and nev(e|G) is the number of edges lying closer to the vertex v than the vertex u. Edges equidistant 
from both ends of the edge uv are not counted. In fact, if Gu,e = {x | d(u,x) < d(v,x)}, Gv,e = { x | 
d(u,x) > d(v,x)} and Ge = {x | d(u,x) - d(v,x) = ±1} then neu(e|G) = |E(Gu,e)|, nev(e|G) = |E(Gv,e)| and 

                                                 
• Cooresponding author: aloghman@math.ui.ac.ir,  loghmanamir@yahoo.com  



184 
 
N(e) = |E(Ge)|. Here for any subset U of the vertex set V = V(G), |E(U)| denotes the number of 
edges of G between the vertices of U. 

The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = ∑[ nfu(f|G)+ nfv(f|G)] 
where summation goes over all edges of G see for details [7,9-11]. On can see that, for every f = 
uv ∈ E(G) we define PI(f) = nfu(f|G) + nfv(f|G) and N(f) = |E(G)| - PI(f), Therefore 

∑−=
∈ )(

2 )(|)(|)(
GEf

fNGEGPI . 

In [6], Ashrafi, Manoochehrian and Yousefi-Azari. defined a new polynomial and they 
named the Padmakar-Ivan polynomial. They abbreviated this new polynomial as PI(G,x), for a 
molecular graph G and investigate some of the elementary properties of this polynomial. 

Definition. Let G be a connected graph and u, v be vertices of G. We define: 
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In a series of papers [1-5], Ashrafi and Loghman computed PI index of some nanotubes and 
nanotori. In [12] the authors computed polynomial of some benzenoid graphs. Here we continue 
this progress to compute the PI polynomial of the armchair polyhex nanotubes and nanotorus. Our 
notation is standard and mainly taken from [13,14]. Throughout this paper T = TUVC6[2p,q] 
denotes an arbitrary armchair polyhex nanotubes and G=G[2p,q] denotes a polyhex nanotorus, see 
Figure 1. 
 

  
 

Fig. 1. (a) An Armchair TUVC6[20,n] (b) A Polyhex Nanotorus. 
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2. PI Polynomial of TUVC6[2p,q] 
 
In this section, the PI polynomial of the graph T = TUVC6[2p,q] were computed. From 

Figs. 1(a) and 2(a), it is easy to see that |E(T)| = p(3q-2). In the following theorem we compute the 
PI polynomial of the molecular graph T in Figure 1(a). 

Theorem 1. The PI polynomial of armchair polyhex nanotube is computed as follows: 
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Proof. To compute the PI polynomial of T, it is enough to calculate N(e). To do this, we consider 
two cases: that e is horizontal or oblique edge. If e is horizontal a similar proof as Lemma 1 in [3] 

shows that 
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 where Ti denotes the set of all horizontal 

edges of the ith row of the armchair polyhex lattice. Also, by Lemma 2 in [3], if e is an oblique 

edge in the kth row, 1≤ k ≤ p, then N(e) =
⎩
⎨
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+≤−
+≥−+

kpqq
kpqkp

22
)1(22

. Therefore we consider Eij 

denote the oblique edge of T in the ith row and jth column. We first notice that for every i, 1≤ i ≤ q-
1, N(Ei1) = N(Ei2) = ⋅⋅⋅ = N(Ei(2p)), Fig. 2(a). 
 

 
 

Fig. 2. (a) An Armchair Lattice with p = 4 and q = 15 (b) Lattice of a Polyhex Nanotorus 
with p=2 and q=6. 
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Let X and Y are the set of all horizontal and oblique edges of T. It is easy to see that |X|=pq and 
|Y|=2p(q-1). Then Since T is symmetric, we have: 
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For every f in X, we have two cases: 
Case 1. 2|p and 2|q-1. In this case by Lemma 1 in [3], we have: 
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Case 2. p is odd or q is even. In this case, we have: 
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then we have three cases: 
Case 1. q≥2p+1. In this case by Figure 2(a), we have: 
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Case 2. p+1<q<2p+1. In this case, we have: 
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Case 3. q≤p. In this case, we have: 
qTE

Yf

ENTE

Yf

fNTE pqxxx 2)|(|)()|(|)()|(| 211 −

∈

−

∈

− == ∑∑
 

which completes the proof. 
Corollary 1. The PI index of armchair polyhex nanotube is as follows: 
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where A = 9p2q2 – 12p2q – 5pq2 + 8pq + 4p2 – 4p and B = 9p2q2 – 20p2q –pq2 + 4pq + 4p3 + 
8p2 – 4p. 
 
 

3. PI Polynomial of polyhex nanotorus  
 
In this section, the PI polynomial of the graph G = G[2p,q] were computed. We first notice 

that q must be even, say q = 2m. From Figures 1(b) and 2(b), it is easy to see that |E(T)| = 3pq. In 
the following theorem we compute the PI polynomial of the polyhex nanotorus. 

Theorem 2. The PI polynomial of armchair polyhex nanotorus is computed as follows: 
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Proof. To compute the PI polynomial of G, it is enough to calculate N(e). By Lemma 1, 2 in [5] 
we have: 
If e is a horizontal edge then N(e) = q and if e is a non-horizontal edge then N(e) = 
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. Let X and Y are the set of all horizontal and non-horizontal edges of G. It is 

easy to see that |X|=pq and |Y|=2pq. Then Since G is symmetric, we have: 

⎩
⎨
⎧

≥+
≤+

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+

⎩
⎨
⎧

≥
≤

+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+

⎪⎩

⎪
⎨
⎧

≥∑

≤∑
+∑=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+∑+∑=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+∑=

+−−

+−−

−−

−−
−

∈

−−
∈

−−

∈

−

∈

−

∈

−

∈

−

pqpqxpqx
pqpqxpqx

pq
GV

GE
GV

pqpqx
pqpqx

pqx

GE
GV

pqx

pqx
x

GE
GV

xx

GE
GV

xxGPI

qppq

pqpq

ppq

qpq
qpq

Yf

ppq
Yf

qpq

Xf

qpq

Yf

fNGE

Xf

fNGE

GEf

fNGE

22
22

3
2

1|)(|

|)(|
2

1|)(|
22
22

|)(|
2

1|)(|
2

2

|)(|
2

1|)(|

|)(|
2

1|)(|
),(

2)2(3)13(

2)1(3)13(

)26(3

)23(3
3

)26(3

)23(3

3

)()|(|)()|(|

)(

)()|(|

 

which completes the proof. 
Corollary 2. Suppose G is a polyhex nanotorus. Then  we have: 
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