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The problem of predicting the different classes of DNA binding protein from the protein 
sequence information is still an open problem in bioinformatics. We implemented a two-
layered artificial neural network (ANN) of predicting the DNA binding proteins and their 
classification into four major classes from their amino-acid sequences. Using 61 sequence 
derived features we are able to achieve 72.99% correct prediction of proteins into DNA 
binding/non-DNA binding (in the dataset of 1000 proteins). For the complete set of 61 
parameters using 5-fold cross-validated classification, ANN model revealed a superior 
model (accuracy = 72.99 ± 6.86%, Qpred = 73.952 ± 13.12%, sensitivity = 81.53 ± 6.73% 
and specificity = 72.54 ± 6.39%). The classification accuracy for predicted DNA binding 
protein into four sub-classes was 70.73% (on average) using five fold cross validation, 
indicating that multi-class ANN classification system (61-11-4) may have certain level of 
unique prediction capability.  
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1. Introduction 
 
The prediction of protein structure from amino acid sequence has become the Holy Grail 

of computational molecular biology. The information necessary for protein folding resides 
completely within the primary structure; molecular biologists have been fascinated with the 
possibility of obtaining a complete three-dimensional picture of a protein by simply applying the 
proper algorithm to a known amino acid sequence [1]. The development of rapid methods of DNA 
sequencing coupled with the straightforward translation of the genetic code into protein sequences 
has amplified the urgent need for automated methods of interpreting these one-dimensional, linear 
sequences in terms of three-dimensional structure and function. Advanced and specialized 
databases are needed to facilitate the retrieval of relevant information from the deluge of sequence 
data and to provide insight into the protein structure and function. Further, it is clear that rational 
classification of proteins encoded in sequenced genomes is critical for making the genome 
sequences maximally useful for functional and evolutionary studies [2]. 

The family of DNA binding proteins is one of the most populated and studied amongst the 
various genomes of bacteria, archea and eukaryotes. Most of these proteins, such as the eukaryotic 
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and prokaryotic transcription factors, contain independently folded units (domains) in order to 
accomplish their recognition with the contours of DNA. It is now clear that the majority of these 
DNA-binding scaffolds which are in general relatively small, less than 100 amino acid residues, 
belong to a large number of structural families with characteristic sequences and three-dimensional 
designs or conformations [3]. Computational biology applying fast and sensitive algorithms strives 
to extract the maximum possible information from these sequences by classifying them according 
to their homologous relationships, predicting their likely biochemical activities and/or cellular 
functions, three-dimensional structures and evolutionary origin. There have been studies to detect 
[4, 5], design [6] and predict them using a probabilistic recognition code [7]. There have also been 
works towards analyzing protein–DNA recognition mechanism [8] and binding site discovery [9].  
DNA binding proteins represent a broad category of proteins, known to be highly diverse in 
sequence and structure. Structurally, they have been divided into 54 protein-structural families 
[10]. With such a high degree of variance, using conventional annotation methods rooted in 
database searching for sequence similarity [11], profile or motif similarity [12] and phylogenetic 
profiles [13] may not lead to reliable annotations. In this context, a DNA binding protein 
prediction protocol that takes into account the structural information and does not depend on 
sequential or structural homology to proteins with known functions will be very useful. 

Previously, there have been a few bioinformatics methods developed towards automated 
identification and prediction of DNA binding proteins. The pseudo-amino acid composition is 
used to identify proteins that bind to RNA, rRNA and DNA [14]. Structural information was 
integrated with the neural network approach for the prediction of DNA binding proteins [15]. 
Electrostatic features of proteins were also characterized through an automated approach for DNA 
binding protein and DNA binding site prediction [16, 17]. Further, the overall charge and electric 
moment can be used to identify DNA binding proteins [18]. Accuracy rates achieved in these 
methods varied from 65% to 86% depending on both the features used and the validation method 
adopted. 

Strategically, we have used a neural network, two-layer, fully automated computational 
method capable of recognizing DNA binding proteins first, and then classifying them into their 
different classes based on their sequences derived features.  

 
 
2. Methodology 
 
Data set for prediction of DNA binding/non-DNA binding 
 
A dataset of 500 DNA binding protein sequences were extracted from PDB. A non-

redundant treatment was applied to eliminate the sequences which share a high degree of similarity 
(>90%) with others in order to avoid overtraining. The treatment was carried out using the 
program BLASTCLUST (http://www.ncbi.nlm.nih.gov/BLAST/), which used the BLAST 
algorithm to systematically cluster protein sequences on the basis of pair-wise matches. The 
default values were used for all BLAST parameters: matrix BLOSUM62, gap opening cost of 11, 
gap extension cost of 1, E-value threshold of 1e-6. These sequences were used as positive examples 
for prediction as DNA binding proteins. The sequences data on negative examples were obtained 
from the SWISSPROT database (http://expasy.org/sprot/). DNA binding proteins were removed 
from the original dataset. A non-redundant treatment was applied (same as for positive datasets) 
such that no sequence had similarity higher than 25% to any others. Thus, 500 non-DNA binding 
sequences were optimized as negative examples.  

 
Dataset for classification of DNA binding proteins into four major classes 
 
The above mentioned 500 protein sequences of DNA binding protein were then grouped 

into four major classes: class 1 (Homeo box domain) consist of 125 sequences, class II (Zinc 
finger) consist of 125 sequences, class III (Leucine zipper) having 125 sequences and class IV 
(Helix-Turn-Helix) with 125 sequences. They were used for construction of neural networks 

http://www.ncbi.nlm.nih.gov/BLAST/
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training and validating the model for classification of predicted DNA binding proteins into four 
classes. 

 
 
Neural network architecture 
 
The implementation of ANN was realized using the software package SNNS (Version- 

4.2) from Stuttgart University [19]. We have used two feed-forward back-propagation neural 
networks with a single hidden layer. First layer of neural network is used for prediction of DNA 
binding/non-DNA binding proteins from the protein sequence, whereas, the second layer is used 
for classifying the predicted DNA binding protein into out of four major classes. The 1st neural 
network consisting of 61 inputs, 7 hidden nodes and 1 output node. The number of nodes in the 
hidden layer was varied from 1 to 11 in order to find the optimal network that allows most 
accurate separation of DNA binding and non-DNA binding proteins in the training sets. The 2nd 
neural network consisting of 61 inputs, 11 hidden nodes and four output nodes (each node is 
specified for each class of DNA binding protein) (Figure 1). The number of nodes in the hidden 
layer was varied from 1 to 15 in order to find the optimal network that allows most accurate 
classification of DNA binding protein in the training sets. For each sequence in the training and 
testing sets, we have transformed 61 network input parameters into the normalized values varying 
from 0 to 1. Similarly, the output parameters from the ANN were in the range of 0 to 1. During the 
learning phase, a value of 1 was assigned for the DNA binding protein and 0 for non-DNA 
binding. For configuration of the ANN, 100 independent training runs were performed to evaluate 
the average predictive power of the network. The corresponding counts of the false/true positive 
and negative predictions were estimated using 0.1 and 0.9 cut-off values for non-DNA binding and 
DNA binding proteins respectively. Thus, a protein sequence from the testing set was considered 
correctly predicted as DNA binding protein by the ANN only when its output value ranged from 
0.9 to 1.0. For each non-DNA binding protein of the testing set the correct prediction was assumed 
if the corresponding ANN output lies between 0 and 0.1. Thus, all network output values ranging 
from 0.2 to 0.9 have been ultimately considered as incorrect predictions (rather than undetermined 
or non-defined). If the input protein sequence is predicted as enzyme than it is parsed into the 
second layer and is classify into its particular class based on the maximum value obtained from the 
defined out put node for each class. For example to classify the predicted DNA binding into class 
1 (Homeo box) the predicted output value is 1, 0, 0, 0 and so on. The input to second filtering 
network is the same input values used for the first layer.  
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Fig. 1. Configuration of artificial neural network used to develop binary primary sequence 
descriptor model for DNA binding/non-DNA binding proteins. 

 
Sequence derived parameters calculation 
 
A set of 61 parameters were calculated from the protein sequence alone using PEPSTAT 

(EMBOSS suite) ftp://emboss.open-bio.org/pub/EMBOSS [20] for all 1000 protein sequences. 
The average values of these 61 parameters were independently calculated for DNA binding and 
non-DNA binding proteins as well as for each class of DNA binding protein and used as input 
values to the ANN model. 

 
Fivefold cross-validation 
 
A prediction method is often developed by cross-validation or jack-knife method [21]. 

Because of the size of the dataset, the jack-knife method (individual testing of each enzyme in the 
data set) was not feasible. So a more limited cross-validation technique has been used, in which 
the dataset is randomly divided into five subsets, each containing equal number of DNA binding 
proteins. Each set is a balanced set that consist of 50 percent of DNA binding and 50 percent non-
DNA binding proteins. The data set has been divided into training and testing set. The training set 
consists of five subsets. The network is validated for minimum error on testing set to calculate the 
performance measure for each fold of validation. This has been done five times to test for each 
subset. The final prediction results have been averaged over five testing sets. 
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Table 1. 61 ‘Pepstat(EMBOSS)’ primary sequence descriptors used in the study. 
 

DNA binding Non-DNA 
binding DNA binding Non-DNA 

binding Sequence derived 
parameters Max Min Max Min 

Sequence 
derived 

parameters Max Min Max Min 
Molecular Weight 0.207588 0.00182 0.20947 0.00419 N_Mole % 0.7186 0.1200 0.9091 0.2300 
Average Residue 0.11811 0.09159 0.1209 0.09186 N_DayhoffStat 0.1671 0.0987 0.2114 0.1078 
Isoelectric Point 0.104656 0.0427 0.1288 0.03857 P_Mole % 0.9572 0.3450 3.6556 0.5680 
Extinction 
Coefficient 0.29032 0.019 0.33257 0.027 P_DayhoffStat 0.1841 0.0089 0.703 0.02908

Extinction 
Coefficient 
(1 mg/ml) 

0.275 0.024 0.376 0.036 Q_Mole % 0.585 0.0871 1.5106 0.1098 

Improablity / 
Proability 
inclusion bodies 

0.928 0.494 0.979 0.41 Q_DayhoffStat 0.15 0.0098 0.3873 0.0129 

A_Mole % 0.18828 0.02881 0.21186 0.03 R_Mole % 1.0682 0.0088 2.1256 0.0187 
A_DayhoffStat 0.2189 0.0335 0.2464 0.045 R_DayhoffStat 0.218 0.02389 0.434 0.0452 
B_Mole % 0.1989 0.0017 0.0902 0.0011 S_Mole % 0.9035 0.1796 2.2034 0.0012 
B_DayhoffStat 0.0292 0.001 0.0109 0.0009 S_DayhoffStat 0.1291 0.0257 0.3148 0.0389 
C_Mole % 1 0.00659 2.0339 0.0089 T_Mole % 1.0497 0.3091 1.4352 0.1203 
C_DayhoffStat 0.3448 0.02154 0.7013 0.0154 T_DayhoffStat 0.1721 0.0507 0.2353 0.0092 
D_Mole % 0.8147 0.0154 1.206 0.0015 V_Mole % 0.15 0.04484 0.17647 0.0289 
D_DayhoffStat 0.1481 0.0152 0.2193 0.0652 V_DayhoffStat 0.2273 0.0679 0.2674 0.0546 
E_Mole % 1.018 0.0147 1.8615 0.0254 
E_DayhoffStat 0.1697 0.0215 0.3102 0.0145 W_Mole % 0.4598 0.00245 0.4839 0.0254 

F_Mole % 0.9195 0.1277 1.0044 0.0596 W_DayhoffStat 0.3537 0.0021 0.3722 0.0215 
F_DayhoffStat 0.2554 0.0355 0.279 0.0101 
G_Mole % 0.25 0.00769 0.36923 0.00503 X_Mole % 0.4562 0.025 0.3262 0.0254 

G_DayhoffStat 0.2976 0.0092 0.4396 0.006 X_DayhoffStat 0.5263 0.0562 0.3215 0.025 
H_Mole % 0.6513 0.00894 1.0271 0.021 
H_DayhoffStat 0.3257 0.0456 0.5136 0.0598 Y_Mole % 0.6135 0.0159 2.4615 0.0521 

I_Mole % 1 0.2077 1.0377 0.0089 Y_DayhoffStat 0.1804 0.0154 0.724 0.00987
I_DayhoffStat 0.2222 0.0462 0.2306 0.0564 
K_Mole % 1.018 0.0591 2.0455 0.00115 Z_Mole % 0.2222 0.0089 0.3262 0.0154 

K_DayhoffStat 0.1542 0.00213 0.3099 0.0002 Z_DayhoffStat 0.894 0.1256 0.265 0.03652
L_Mole % 0.19444 0.03139 0.19101 0.0321 Tiny Mole % 0.6 0.15569 0.6389 0.16239
L_DayhoffStat 0.2628 0.0424 0.2581 0.0021 Small Mole % 0.75 0.4012 0.77119 0.32479

M_Mole % 0.5169 0.0456 1.2346 0.0268 Aliphatic Mole 
% 0.31481 0.14808 0.32903 0.02542

M_DayhoffStat 0.3041 0.0154 0.7262 0.0158 Aromatic Mole 
% 0.24521 0.04918 0.29231 0.08541

Charged Mole % 0.33533 0.05 0.46986 0.01389 Non-polar 
Mole % 0.85 0.45521 0.86154 0.31818

Basic Mole % 0.17365 0.05 0.31624 0.00926 Polar Mole % 0.54479 0.15 0.68182 0.13846
Acidic Mole % 0.16168 0.00897 0.25 0.0154      

 
 
All the results reported for 2nd layer of ANN were obtained by performing a modified five-

fold cross-validation procedure [22]. First, a given number of proteins (80) were randomly drawn 
from the dataset for each of the four families. The sum of these samples constituted the training set 
(320). All the other proteins were allocated to the evaluation set (180). Then, the neural network 
was trained and later evaluated using this partition. The accuracy rate on the evaluation set was 



196 
 
computed as the ratio of the number of correctly classified proteins to the total number of proteins, 
as is standard in the literature. Next, a new sampling was taken from the dataset to form another 
training set and evaluation set, and the training and evaluation process were repeated. This 
procedure was repeated five times and the final results were reported as the averaged accuracy rate 
over these five runs. 

 
Table 2.  61 ‘Pepstat (EMBOSS)’ primary sequence descriptors used in the study. 

 
Class 1 

Homeo box 
Class 2 

Zinc finger 
Class 3 

Leucine zipper 
Class 4 

Helix-turn-helix Parameters 
Max Min Max Min Max Min Max Min 

Mol. Weight 0.208 0.002 0.177 0.015 0.067 0.004 0.045 0.038 
Average Residue 0.118 0.091 0.120 0.101 0.117 0.104 0.116 0.104 
Isoelectric Point 0.105 0.043 0.110 0.046 0.086 0.045 0.101 0.045 
Extinction Coefficient 0.290 0.016 0.181 0.001 0.085 0.004 0.067 0.020 
Extinction Coefficient 
    (1 mg/ml) 0.275 0.017 0.225 0.006 0.172 0.031 0.172 0.048 
Improablity/Proability 
 inclusion bodies 0.928 0.494 0.881 0.497 0.871 0.497 0.848 0.503 
A_Mole % 0.188 0.029 0.241 0.027 0.161 0.028 0.160 0.022 
A_DayhoffStat 0.219 0.034 0.280 0.032 0.187 0.032 0.186 0.025 
B_Mole % 0.313 0.027 0.164 0.034 0.133 0.098 0.920 0.013 
B_DayhoffStat 0.165 0.010 1.132 0.264 0.455 0.027 0.255 0.001 
C_Mole % 1.000 0.092 0.345 0.013 0.400 0.024 0.299 0.049 
C_DayhoffStat 0.345 0.022 0.119 0.001 0.138 0.028 0.103 0.017 
D_Mole % 0.815 0.062 0.735 0.197 0.903 0.175 0.818 0.279 
D_DayhoffStat 0.148 0.025 0.134 0.036 0.164 0.032 0.149 0.051 
E_Mole % 1.018 0.013 1.310 0.317 1.132 0.416 0.938 0.299 
E_DayhoffStat 0.170 0.001 0.218 0.053 0.189 0.069 0.156 0.050 
F_Mole % 0.920 0.128 0.725 0.098 0.556 0.013 0.591 0.166 
F_DayhoffStat 0.255 0.036 0.201 0.027 0.154 0.001 0.164 0.046 
G_Mole % 0.250 0.008 0.112 0.024 0.100 0.053 0.118 0.050 
G_DayhoffStat 0.298 0.009 0.133 0.028 0.119 0.063 0.141 0.059 
H_Mole % 0.651 0.012 0.455 0.049 0.635 0.160 0.609 0.134 
H_DayhoffStat 0.326 0.065 0.227 0.017 0.318 0.080 0.305 0.067 
I_Mole % 1.000 0.208 1.215 0.117 1.148 0.172 1.317 0.307 
I_DayhoffStat 0.222 0.046 0.270 0.026 0.255 0.038 0.293 0.068 
K_Mole % 1.018 0.032 1.089 0.110 0.833 0.080 1.532 0.136 
K_DayhoffStat 0.154 0.065 0.165 0.017 0.126 0.012 0.232 0.021 
L_Mole % 0.194 0.031 0.167 0.036 0.139 0.034 0.140 0.060 
L_DayhoffStat 0.263 0.042 0.226 0.049 0.188 0.047 0.189 0.081 
M_Mole % 0.517 0.015 0.448 0.046 0.556 0.248 0.365 0.103 
M_DayhoffStat 0.304 0.081 0.264 0.027 0.327 0.069 0.215 0.061 
N_Mole % 0.719 0.103 0.611 0.045 0.862 0.258 0.887 0.140 
N_DayhoffStat 0.167 0.061 0.142 0.495 0.201 0.060 0.206 0.033 
P_Mole % 0.957 0.140 0.840 0.164 0.862 0.160 0.679 0.166 
P_DayhoffStat 0.184 0.033 0.162 0.032 0.166 0.031 0.131 0.032 
Q_Mole % 0.585 0.166 0.817 0.068 0.874 0.013 0.855 0.059 
Q_DayhoffStat 0.150 0.002 0.210 0.136 0.224 0.001 0.219 0.015 
R_Mole % 1.068 0.024 1.525 0.193 0.774 0.214 0.868 0.134 
R_DayhoffStat 0.218 0.048 0.311 0.040 0.158 0.044 0.177 0.027 
S_Mole % 0.904 0.180 1.250 0.280 0.935 0.248 0.893 0.357 
S_DayhoffStat 0.129 0.026 0.179 0.040 0.134 0.069 0.128 0.051 
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Class 1 
Homeo box 

Class 2 
Zinc finger 

Class 3 
Leucine zipper 

Class 4 
Helix-turn-helix Parameters 

Max Min Max Min Max Min Max Min 
T_Mole % 1.050 0.309 0.851 0.117 0.874 0.175 0.867 0.224 
T_DayhoffStat 0.172 0.051 0.140 0.019 0.143 0.029 0.142 0.037 
V_Mole % 0.150 0.045 0.129 0.038 0.152 0.041 0.105 0.040 
V_DayhoffStat 0.227 0.068 0.196 0.058 0.230 0.062 0.160 0.061 
W_Mole % 0.460 0.128 0.364 0.351 0.255 0.070 0.253 0.033 
W_DayhoffStat 0.354 0.867 0.280 0.186 0.196 0.218 0.195 0.166 
X_Mole % 0.512 0.142 0.957 0.097 0.519 0.051 0.853 0.002 
X_DayhoffStat 0.265 0.105 0.184 0.076 0.332 0.148 0.198 0.024 
Y_Mole % 0.614 0.160 0.597 0.032 1.035 0.254 0.544 0.207 
Y_DayhoffStat 0.180 0.253 0.176 0.010 0.304 0.075 0.160 0.061 
Z_Mole % 0.155 0.195 0.545 0.065 0.519 0.306 0.519 0.006 
Z_DayhoffStat 1.231 0.022 0.335 0.208 0.332 0.044 0.332 0.497 
Tiny Mole % 0.600 0.156 0.408 0.173 0.364 0.139 0.387 0.175 
Small Mole % 0.750 0.401 0.519 0.387 0.597 0.389 0.590 0.368 
Aliphatic Mole % 0.315 0.148 0.332 0.165 0.306 0.172 0.276 0.207 
Aromatic Mole % 0.245 0.049 0.175 0.039 0.167 0.076 0.166 0.071 
Non-polar Mole % 0.850 0.455 0.688 0.460 0.649 0.525 0.659 0.512 
Polar Mole % 0.545 0.150 0.540 0.312 0.475 0.351 0.488 0.341 
Charged Mole % 0.335 0.050 0.344 0.170 0.278 0.186 0.323 0.168 
Basic Mole % 0.174 0.050 0.202 0.084 0.143 0.097 0.188 0.090 
Acidic Mole % 0.162 0.000 0.173 0.057 0.151 0.076 0.147 0.071 

 
 
Performance measures 
 
The prediction results of 1st layer of ANN model developed in the study were evaluated 

using the following statistical measures. 
1. Accuracy of the methods: The accuracy of prediction for neural network models were 

calculated as follows: 
 

T
NPQACC

+
= , where T = (P+N+O+U) 

 
Where P and N refer to correctly predicted DNA binding and non-DNA binding proteins, and O 
and U refer to over and under predictions, respectively. 
 
2. The Matthews correlation coefficient (MCC) is defined as: 

( ) ( )
( ) ( ) ( ) ( )ONUNOPUP

UONPMCC
+×+×+×+

×−×
=  

3. Sensitivity (Qsens) and specificity (Qspec) of the prediction methods are defined as: 

UP
PQsens +

=  

ON
NQspec +

=  

4. QPred (Probability of correct prediction) is defined as: 

100×
+

=
OP

PQpred  
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3. Results and discussion 
 
The 1st layer of ANN model develop in this study (61-7-1) is trained with the sequence 

derived features (61 parameters) calculated using PEPSTAT. The number of nodes in the hidden 
layer was varied from 1 to 11 in order to find the optimal network that allows most accurate 
separation of DNA binding/non-DNA binding proteins in the training sets (Table 3). When 
applying a fivefold cross-validation test using five data sets, we found that the network reached an 
overall accuracy of 72.99 ± 6.86%. The prediction results are presented in Table 4. The other 
performance measures were: Qpred = 73.95 ±13.12%, sensitivity = 81.53 ± 6.73% and specificity 
= 72.54 ± 6.39%. The value of the learning parameter was set to 0.1.  

 
 
Table 3. Parameters of specificity, sensitivity, accuracy and positive predictive values for 
prediction of DNA binding and non-DNA binding from the protein sequence by the 1st 
layer of artificial neural networks with the varying number of hidden nodes. The cut-off 
values of 0.1 and 0.9 have been used for negative and  positive  predictions  respectively. 

 
Hidden Nodes Accuracy Specificity Sensitivity Q(Pred) 

1 0.5869 0.6523 0.7423 65.23 
3 0.6213 0.6452 0.5013 72.13 
5 0.5522 0.5864 0.5123 55.23 
7 0.6976 0.6878 0.7535 68.32 
9 0.6435 0.6020 0.7632 65.18 

11 0.6235 0.6425 0.7123 69.25 
 

 
Table 4. Performance measure of 1st neural network for the prediction of DNA 
binding/non-DNA  binding  proteins  using five  fold  cross validation based on sequence  
                                                             derived features. 

 
Fivefold 

cross 
validation 

Accuracy Specificity Sensitivity Q(Pred) Prediction 
range 

(DNA binding 

Prediction range 
(Non-DNA 
binding) 

C1 0.8.20 0.8632 0.7271 85.12 0.6726 – 1.00 0.00 – 0.5240 
C2 0.7430 0.7791 0.8580 70.61 0.5079 – 1.00 0.00 – 0.5658 
C3 0.7002 0.6024 0.8001 71.61 0.4257 – 1.00 0.00 – 0.5386 
C4 0.7140 0.6567 0.8901 62.28 0.3592 – 1.00 0.00 – 0.6486 
C5 0.6906 0.7259 0.8015 80.14 0.4748 – 1.00 0.00 – 0.5836 

Mean 0.7299 ±  
0.0686 

0.7254 ± 
0.0639  

0.8153 ± 
 0.0673 

73.952 ± 
13.123 

  

 
 

By applying a modified fivefold cross-validation test using five data sets, we found that 
the second layer of network (61-11-4) is a superior model for classification of predicted DNA 
binding proteins into their suitable classes. The number of nodes in the hidden layer was varied 
from 1 to 15 in order to find the optimal network that allows most accurate classification system of 
DNA binding proteins in the training sets (Table 5). Out of 500 DNA binding proteins (125 
proteins from each class) in each cross validation set 220 to 343 DNA binding proteins were 
correctly classified. However, the network was more efficiently classify the proteins belonging to 
Leucine zipper and Helix-turn-helix in compare to other classes (Table 6). The classification 
accuracy for DNA binding proteins from 4 families is in the range of 73.34% to 80.06% using five 
fold cross validation with an overall accuracy of 76.74% using a sequence derived features, 
indicating that multi-class ANN classification system (61-11-4) may have certain level of unique 
prediction capability. 
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Table 5. Result for classification of DNA binding proteins into four major classes using 2nd 
neural  network  based  on  protein  sequence derived features with the varying number of  
                                                             hidden nodes. 

 
Number of 

hidden 
nodes 

Number of DNA 
binding protein 

taken  

Correctly predicted DNA binding protein  
 

Total 

  Homeo 
box 

Zinc finger Leucine 
zipper 

Helix-turn-
helix 

 

1 500 65 74 61 65 265 
3 500 56 61 51 52 220 
5 500 55 70 61 65 251 
7 500 65 80 75 78 298 
11 500 86 87 81 89 343 
15 500 84 83 77 81 325 
 

 
Table 6. Predicted result of 2nd layer of neural network for classification of DNA binding 

proteins into corresponding classes using the fivefold cross validation sets. 
 

Accuracy rate (%) using five fold cross validation Family 
1 2 3 4 5 Mean ± sd 

Homeo box 66.7 70.8 66.7 79.2 83.3 73.34 ± 7.55  
Zinc finger 69.2 73.3 78.3 71.7 82.5 75.0 ± 5.35 
Leucine zipper 85.0 83.3 80.8 80.0 71.2 80.06 ± 5.34 
Helix-turn-helix 70.8 73.2 80.6 85.8 82.4 78.56 ± 6.33 
Average      76.74 ± 6.14 

 
 
The classes of newly found DNA binding proteins are usually determined either by 

biochemical analysis of eukaryotic and prokaryotic genomes or by microarray chips. These 
experimental methods are both time-consuming and costly. With the explosion of protein entries in 
databanks, we are challenged to develop an automated method to quickly and accurately determine 
the enzymatic attribute for a newly found protein sequence: is it a DNA binding or a non-DNA 
binding protein? If it is, to which class does it belongs? The answers to these questions are 
important because they may help deduce the mechanism and specificity of the query protein, 
providing clues to the relevant biological function. Although it is an extremely complicated 
problem and might involve the knowledge of three-dimensional structure as well as many other 
physicochemical factors, some quite encouraging results have been obtained by a bioinformatical 
method established on the basis of amino acid composition alone [23]. Since the amino acid 
composition of a protein does not contain any of its sequence-order information, a logical step to 
further improve the method is to incorporate the sequence-order information into the predictor. To 
realize this, the most straightforward way is to represent the sample of a protein by its entire 
sequence, the so-called sequential form. 

The results demonstrate that the developed ANN-based model for binary prediction of 
DNA binding/non-DNA binding proteins and classification of predicted DNA binding proteins 
into four major classes is adequate and can be considered an effective tool for ‘in silico’ screening. 
The results also demonstrated that the sequence derived parameters readily accessible from the 
protein sequences only, can produce a variety of useful information to be used ‘in silico’; clearly 
demonstrates an adequacy and good predictive power of the developed ANN model. There is 
strong evidence, that the introduced sequence features do adequately reflect the structural 
properties of proteins. The structure of a protein is an important determinant for the detailed 
molecular function of proteins, and would consequently also be useful for prediction of DNA 
binding proteins and for their classification. This observation is not surprising considering that the 
calculated parameters should cover a very broad range of proprieties of bound atoms and 



200 
 
molecules related to their size, polarizability, electronegativity, compactness, mutual inductive and 
steric influence and distribution of electronic density, etc. As it can be seen that the average value 
for different classes of DNA binding proteins were clearly separated (Table 1 & 2) and, hence, the 
selected 61 parameters should allow building an effective ANN model for binary prediction as 
well as their classification further.  

Presumably, accuracy of the approach operating by the sequence derived features can be 
improved even further by expanding the parameters or by applying more powerful classification 
techniques such as Support Vector Machines or Bayesian Neural Networks. Use of merely 
statistical techniques in conjunction with the sequence parameters would also be beneficial, as they 
will allow interpreting individual parameter contributions into “DNA binding/non-DNA binding-
likeness”.  

 
 
References 

 
  [1] C. B. Anfinsen, Science 181, 223 (1973). 
  [2] C. Wu, M. Berry, S. Shivakumar, J. McLarty, J. Mach. Learn. 21 N(1-2), 177 (1995).  
  [3] C. Branden, J. Tooze, Introduction to Protein Structure, Garland Publishing Co., New York  
        (1991). 
  [4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, J. Mol Biol. 215, 403 (1990). 
  [5] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman,  
       Nucleic Acids Res.  25, 3389 (1997). 
  [6] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, D. Haussler,  J. Mol. Biol.  235, 1501 (1994). 
  [7] S. Vinga, J. Almeida, Bioinformatics 19, 513 (2003). 
  [8] J. K. Vries, R. Munshi, D. Tobi, J. Klein-Seetharaman, P. V. Benos, I. Bahar, Appl.  
        Bioinformatics  3, 137 (2004). 
  [9] K. Harpreet, G. P. S. Raghava, Protein Science 12, 923 (2003). 
[10] E. C. Webb, Enzyme Nomenclature, Academic Press, San Diego CA, (1992). 
[11] A. Narayanan, E. C. Keedwell, B. Olsson, Appl. Bioinformatics 1(4), 191 (2002). 
[12] M. Bhasin, G. P. S. Raghava, Nucleic Acids Research 32, W383 (2004a). 
[13] M. Bhasin, G. P. S. Raghava, Nucleic Acids Research 32, W414 (2004b). 
[14] Y. Cai, S. L. Lin, Biochimica et Biophysica Acta. 1648, 127 (2003). 
[15] S. Ahmad, M. M. Gromiha, A. Sarai, Bioinformatics 20, 477 (2004). 
[16] E. W. Stawiski, L. M. Gregoret, Y. Mandel-Gutfreund, J. Mol. Biol. 326, 1065 (2003). 
[17] S. Jones, P. Van Heyningen, H. M. Berman, J. M. Thornton, J. Mol. Biol. 287, 877 (1999). 
[18] S. Ahmad, A. Sarai, J. Mol. Biol. 341, 65 (2004). 
[19] A. Zell, G. Mamier, Stuggart Neural Network Simulator (Version- 4.2), University of  
        Stuttgart, Stuttgart, Germany (1997). 
[20] P. Rice, I. Longden, A. Bleasby, Trends in Genetics 16 (6), 276 (2000). 
[21] K. C. Chou, C. T. Zhang, Crit. Rev. Biochem. Mol. Biol. 30, 275 (1995). 
[22] D. J. Hand, ‘Construction and assessment of classification rules’. New York: John Wiley and  
        Sons (1997). 
[23] K. C. Chou, D. W. Elrod, J. Proteome Res.  2, 183 (2003). 


