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In this paper, we investigate the process of phase transformation in polymeric materials by 
imposing instantaneous nucleation conditions in the employed Monte Carlo type 
simulations. We calculated the overall crystallization rate constants and the Avrami 
indices for various simulation circumstances and the obtained results were equivalent with 
those predicted by the Avrami equation. The dependence of the crystallization rate 
constant on the growth velocity and concentration of the nuclei was also investigated and a 
comparison was made with the already existing theory. 
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1. Introduction 
  
Recently, by using Monte Carlo simulations, we investigated the sporadic nucleation of 

polymeric materials and we compared these results with those obtained from the Avrami equation 
[1]. As it is thoroughly explained in literature [1-7], the kinetics of crystallization of polymers is 
based on the appearance and growth of the crystalline regions which emerge and expand in the 
volume of the polymer.  

The theoretical and experimental macroscopic studies of the crystallization process are 
mainly based on the recording the evolution of the crystalline fraction of the material, Xc (i.e. the 
ratio between the volume of the crystallized region and the total volume of the material), as 
function of the time [1-7].  

From our recorded data obtained for the sporadic nucleation, we calculated the overall 
crystallization rate constant and the Avrami index [1]. The simulations were carried out for usual 
3-Dimensional space, but also for 2-Dimensional and 1-Dimensional spaces, the results being in 
excellent agreement with theoretical prediction of the Avrami equation for the type of the studied 
nucleation.  

In computer simulations for the 3-Dimensional space, we also systematically investigated 
the dependence of the overall crystallization rate constant on the crystallization velocity. For the 3-
D space, we found that the dependence of this parameter is on the 3-rd power of v, as is predicted 
from theory [6, 7]. 

These previous results gave us a solid image about the versatility of the Avrami model in 
the investigation of the sporadic nucleation in soft matter systems. One may put the question if the 
simulated results still remain in good agreement with the theory when employing the instantaneous 
nucleation mechanism. 

In order to gain further understandings in this direction, we present in the current paper the 
results of Monte Carlo type computer simulations using the method of instantaneous nucleation. 
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with Xc the crystalline fraction of the material. 
 Combining equations (1), (2) and (3), we obtain [6, 7]: 
 

1 െ ܺ௖ ൌ ݌ݔ݁ ቀെ
ସ

ଷ
 ଷቁ           (4)ݐ	ଷ݃ݒߨ

 
 The above equation is usually written in the Avrami form [1-7]: 
 

 1 െ ܺ௖ ൌ  ௡ሻ            (5)ݐሺെ݇݌ݔ݁
 

where: ݇ ൌ െ
ସ

ଷ
 ଷ݃ is the overall crystallization rate constant which depends on the third powerݒߨ

of the growth velocity and linear on the number of nuclei per unit volume.  
n is the Avrami index, that, for instantaneous nucleation, is equal with the dimensionality of the 
space, [6,7].  
 In order to describe the crystallization process in soft matter systems, it is necessary to 
obtain from measured or simulated data the overall crystallization rate constant, k, and the Avrami 
index, n. Using methods similar to those from [13, 14], they could be directly determined, but, 
usually, the Avrami equation is linearized by taking the double logarithm in equation (5) [1-7]: 

 ݈݊ሾെ ݈݊ሺ1 െ ܺ௖ሻሿ ൌ ݈݊ ݇ ൅ ݊ ݈݊  (6)           ݐ
It this case, a line is obtained having the slope equal with the Avrami index, while the intercept 
equals with the logarithm of the crystallization rate constant.. 
 In our Monte Carlo simulations, we consider the instantaneous nucleation of a polymer in 
a cubic box of length L, the programs being modified versions of those used in [1]. At the 
beginning of the run, we randomly threw all the nuclei inside the volume of the box. At all 
subsequent moments of time, the nuclei were spherically grown with the same velocity, v. At 
every time step during the simulation, we recorded the volume percent of the crystalline fraction of 
polymer, Xc. This quantity was calculated as the ratio between the volume occupied by spherulites 
(taking account of overlapping) and the total volume of the box. 
  
 3. Results and discussion 
  

We present here a set of simulation results obtained for a cubic box with length ܮ ൌ 5, at a 
growing nuclei velocity ݒ ൌ 0.005 and with the number of nuclei ݏ ൌ 2000 (resulting a number 
of nuclei per unit volume ݃ ൌ 16ሻ. The dependence of the volume fraction of the crystallized 
polymer as function of time is depicted in Fig. 2. The shape of the graph is identical with the 
theoretical one predicted in [6, 7] on the basis of the Avrami equation (4) and is similar with those 
obtained in [1] in the case of sporadic nucleation.   
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Fig. 2: Volume fraction of the polymer as function  

of time for a cubic box with ܮ ൌ 5 , growth velocity ݒ ൌ 0.005  
and concentration of the nuclei ݃ ൌ 16. 

  
 
 At this point, we have to notice the same drawback as for sporadic nucleation: the 
simulation results based on the Avrami equation (4) predict a final volume fraction of the 
crystallized phase tending towards 1. As already mentioned in [1], the polymers are 
semicrystalline, because the crystals are never completely filling the volume and the degree of 
crystallinity is never equal to 1. This discrepancy was explained by the simplifications of the 
Avrami model and by the observation that the real nucleation of a polymer is a mixture of athermal 
and thermal nucleation.   
 In order to calculate the Avrami index and the crystallization rate constant, we used the 
linearized form (6) of the Avrami equation. In the left side of this equation, there is a double 
logarithm depending on the volume fraction of the crystallized phase, while in the right side there 
is a line equation having the slope equal to the Avrami index. The intercept is represented by the 
logarithm of the crystallization rate constant. The graph in Figure 3 is the linearized representation 
of the data from Figure 2. 

 
Fig. 3:  Representation of the equation (6) for a cubic box with 

ܮ  ൌ 5, growth velocity ݒ ൌ 0.005 and concentration of the nuclei ݃ ൌ 16.  
The red line represents the linear fit of the data. 
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 Equations (4)-(6) also suggest a linear dependence of the crystallization rate constant (k) 
on the concentration of the nuclei (g). Using the same procedure as in the case of its dependence 
on the velocity, from the linear fits in Figure 6, we extracted the intercepts that provide us the 
crystallization rate values.  
 The graph of k versus concentration is presented in Figure 7 (this behaviour is also 
predicted by the Avrami equation).  
 

 
Fig. 7:  Dependence of the crystallization rate as function of ݃ for a cubic box with   

ܮ ൌ 5 and growth velocity  v ൌ 0.01. The red line is the linear fit of data. 
 

 We made various simulations for the instantaneous nucleation process when considering 
also 2-Dimensional and 1-Dimensional systems. For the two dimensional system, we found the 
Avrami index ݊ ൌ 2.0037 േ 0.0008 and the intercept  ݈݊ k ൌ െ5.0765 േ 0.0014. For the one 
dimensional system, the results were ݊ ൌ 1.043 േ 0.007 and the intercept ݈݊ k ൌ െ5.076 േ
0.001. These values are in excellent agreement with the theoretical predictions from [6] and [7], 
which state that, in the case of the instantaneous nucleation, the Avrami index is equal with the 
dimensionality of space.  Therefore, we conclude that the Avrami model is a versatile universal 
tool that scientists can rely on when investigating different complex soft matter systems. 
 One may also notice that, for lower dimensional spaces, the results are slightly better than 
for the 3-Dimensional space. In our opinion, the explanation consists in the statistical fluctuations 
which rapidly increase as the dimensionality of the space increases.  
 
 4. Conclusions 
  
By means of Monte Carlo simulations, we studied the transition process behavior in soft matter 
systems, when induced by an instantaneous nucleation mechanism.  We calculated the overall 
crystallization rate constant and the Avrami index for various starting conditions. The results were 
compared with the predictions from the Avrami equation and we conclude that our computational 
model is in excellent agreement with the  Avrami theory.  
 For simulations in 1, 2 and 3-Dimensional spaces, the Avrami index is equal with the 
dimensionality of the space, as the theoretical model predicts for instantaneous nucleation 
conditions. These results may also be associated to our previous work [1], where, for sporadic 
nucleation, the Avrami index is equal with the space dimensionality plus one (from the time 
parameter).  
 Simulations for the low dimensional spaces are to some extent better than those for higher 
dimensional space, result that is confirmed also for the sporadic nucleation situation [1].  
 The dependence of the overall crystallization rate constant (k) on the growth velocity (v) 
and concentration of the nuclei (g) was also examined and linked with theoretical predictions in 
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the case of 3-Dimensional systems. Our results indicate   a 3-rd power dependence on the growth 
velocity and a linear dependence on concentration, as also calculated from theory. 
The main conclusion is that the Avrami theory is an universal tool that can be used for accurately 
describing phase transition processes (i.e. crystallization in soft matter systems), irrespective of the 
dimensionality of the space and the chosen nucleation mechanism. 
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