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In series of papers, P.V. Khadikar introduced a new topological index and named it as 
Padmakar–Ivan (PI) Index. This index is found very useful in nano technology, 
particularly in making and characterizing carbon nanotubes and nanotori. In this paper the 
vertex PI index of V-phenylenic nanotubes and nanotori, is computed. 
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1. Introduction 
 
Let G be a molecular graph, the vertex and edge-sets of which are represented by V(G) 

and E(G), respectively. A topological index of G is a real number related to the molecular graph of 
G. It must be a structural invariant, i.e., it does not depend on the labelling or the pictorial 
representation of the graph. The Wiener index W is the first topological index proposed to be used 
in chemistry 1-4. It was introduced in 1947 by Harold Wiener for characterization of alkanes. This 
index is defined as the sum of all distances between distinct vertices. The vertex PI index is a new 
topological index proposed by the present authors 5-8. It is defined by PIv(G) = ∑e=uv∈E(G)[nu(e) + 
nv(e)], where nu(e) is the number of vertices of G lying closer to u and nv(e) is the number of 
vertices of G lying closer to v. 

In Refs [9-13] the PI and Szeged indices of some hexagonal graphs containing nanotubes 
and nanotorus are computed. In this paper, we continue this work to compute the vertex PI index 
of molecular graphs related to V-phenylenic nanotubes and nanotori. Our notation is standard and 
mainly taken from Refs [14, 15]. 

  
 
 
2.Main Results  
 
The novel phenylenic and naphthylenic lattices proposed can be contructed from a square 

net embedded on the toroidal surface. In this section, the vertex PI index of a V-phenylenic 
nanotube and nanotorus are computed. Following Diudea [16] we denote a V-Phenylenic nanotube 
by G=VPHX[m,n]. We also denote a V-Phenylenic nanotorus by H=VPHY[m,n].  

 
 
2.1. Vertex  PI index of V-Phenylenic nanotube 
 
In the following theorem we compute , the vertex PI index of the molecular graph G in 

Figure 1. 
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And  2α  =18m3n-12m4+21m3-9m2-18m2n+24m2n2-24mn2+12n3+21n2-30n+6mn-3. 
Proof.  We first notice v = |V(T)| =6mn. To compute the vertex PI index of G, we assume that A, B 
and C to be the set of all vertical, oblique and horizontal edges, respectively. Then we have: 
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To compute the last summation, we suppose that U = ))()(( enen v

Ce
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separate cases, as follows: 
Case 1:  m ≠  n  
  In this case we have: 
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where Si = 3+9+15+… + (6i-3) and min( , )m nβ = . Hence in this case, the vertex PI index of G is 
equal to: 12|-m+n| β 3-3|-m+n|+12mn|-m+n|-18|-m+n| β 2+12|-m+n| β +12 β 2(-m+n)2-12 β (-
m+n)2+3(-m+n)2-12 β 3-12mn+6 β 2+18m3n-12m4+21m3-9m2-18m2n+24m2n2-24mn2, 

min( , )m nβ =  
 
Case2: m = n  
In this case we have U = 4n(Sn+6n-3)+(6nm- Sn-(6n+3)) and so the vertex PI index of G is equal 
to: 18m3n-12m4+21m3-9m2-18m2n+24m2n2-24mn2+12n3+21n2-30n+6mn-3, and proof is 
completed.▲ 
 
 

2.2. Vertex  PI index of V-Phenylenic nanotorus 
 
In the end of this section, we compute the vertex PI index of H ; figure 2.  

 

Theorem 2. PIv(H)= 
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1λ  =    12m2n2+18mn3-9mn2-33mn-12m2n+24|(m-n)| β 3-6|(m-n)|+24mn|(m-n)|-36|(m-
n)| β 2+24|(m-n)| β +24 β 2(m-n)2-24 β (m-n)2+6(m-n)2-24 β 3+12 β 2  ; min( , )m nβ =  
And    2λ  =  12m2n2+18mn3-9mn2-3mn-12m2n+12n3+21n2

-18n+3 
 
Proof. To prove the theorem, we apply a similar method as in Theorem 1. It is easily seen that v = 
|V(H)| =6mn. we assume that A, B and C to be the set of all vertical, oblique and horizontal edges, 
respectively. then we have: 
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To compute the last summation, we suppose that U = ))()(( enen v
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Where Si = 3+9+15+… + (6i-3) and min( , )m nβ = . Hence in this case,  the vertex PI index of H is 
equal to 12m2n2+18mn3-9mn2-33mn-12m2n+24|(m-n)| β 3-6|(m-n)|+24mn|(m-n)|-36|(m-
n)| β 2+24|(m-n)| β +24 β 2(m-n)2-24 β (m-n)2+6(m-n)2-24 β 3+12 β 2  ; min( , )m nβ =  
 
Case2: m=n 
In this case we have U = 4n(Sn+6n-3)+(6nm- Sn-6n+3) and so the vertex PI index  of H is equal to  
12m2n2+18mn3-9mn2-3mn-12m2n+12n3+21n2-18n+3,which completes the proof. ▲          

 
 

 

 
Fig. 1. The Molecular Graph of V-Phenylenic Nanotube. 
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Fig. 2. The Molecular Graph of V-Phenylenic Nanotorus. 
 
 

        
3. Conclusions 
 
In chemical graph theory, mathematical chemistry and mathematical   physics, a 

topological index is any of several numerical parameters (which are usually graph invariants) of a 
molecular graph which characterize its topology. It is a kind of a molecular descriptor. In this 
paper, counting topological index called "Vertex PI index ", of V-phenylenic nanotubes and 
nanotori were determined. 
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