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The urgent need for novel cyclooxygenase-2-inhibitors has provided an impetus for 
understanding the structural requisites at the molecular level. Towards this objective, k-
nearest neighbor molecular field analyses of 19 COX-2 inhibitors were performed. The 
3D-QSAR studies were based on lowest energy conformer of most active compound (TR-
11), employing atom and template based alignment methods. Results generated from the 
atom-based model was found superior (r2=0.96, q2=0.92), to those obtained by the 
template-based model (r2=0.90, q2=0.71), with four components. The predictive ability of 
the models was validated using structurally diversified test set of four compounds that had 
not been included in a preliminary training set of 15 compounds. The predictive r2 value 
for atom-based kNN-MFA model was 0.75, while the corresponding predictive r2 value for 
template-based kNN-MFA model was 0.68. The potency of the benzyledene derivatives 
was interpreted based on kNN-MFA steric and electrostatic point distribution maps. The 
3D-QSAR model (Model-A) was found to accurately predict the Cyclooxygenase-2 
inhibitory activity of structurally diverse test set compounds and to yield reliable clues for 
further optimization of the benzyledene derivatives in the data set. 
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1. Introduction 
 
Nonsteroidal anti-inflammatory drugs (NSAID) are among the most frequently prescribed 

medications being the drugs of the first choice for treatment of the inflammatory and rheumatic 
diseases. The common mechanism of NSAIDs involves the nonselective inhibition of 
cyclooxygenases (COXs) thereby preventing the biosynthesis of prostaglandins (PG) which are the 
important lipid mediators of inflammation as well as numerous homeostatic physiological 
functions.1 As it is now well appreciated, COXs exist in two isoforms, namely COX-1 and COX-
2,2 while the existence of a third isoforom (COX-3) is still into debate. In general terms, COX-1 is 
the constitutive isoform providing normal production of PGs having roles in homeostasis and 
gastroprotection, whereas the COX-2 is induced by proinflammatory stimuli at inflammatory 
sites.3 The discovery of inducible COX-2 at sites of inflammation led to the development of 
selective COX-2 inhibitors with the hope of dimished gastrointestinal side effects associated with 
traditional NSAIDs.4,5 However, recent studies have shown that COX-2 inhibitors are associated 
with increased thromboembolic phenomena in specific patient populations such as cardiovascular 
disease patients challenging the benefits of selective COX-2 inhibition.6-8 Moreover, there is 
currently no clear evidence that COX-2 inhibitors represent an independent risk factor in patients 
at low demographic risk of cardiovascular diseases and therefore, clinical rationale for developing 
compounds with selective COX-2 inhibition still remains to be established.8,9 Meantime, 
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considerable interest in the further potential clinical utilities ofCOX-2 inhibitors has emerged.10-12 
Recent studies indicating the place of COX-2 inhibitors in cancer chemotherapy and neurological 
diseases such as Alzheimer’s and Parkinson diseases still continues to attract investigations on 
development of COX-2inhibitors. 13,14 

There are at least four mechanisms of COX inhibition competitive, tight binding/time 
dependent, weak binding/ mixed and covalent binding.15 Some NSAIDs inhibits COX- 1 and 
COX-2 by similar mechanisms, whereas other NSAIDs have distinct inhibition mechanisms for 
each isoform. For example, celecoxib has been reported as a reversible competitive inhibitor of 
COX-1, while demonstrating time-dependent irreversible inhibition of COX-2.16 

In the present study, we have applied k-nearest neighbor molecular field analysis (kNN-
MFA), 17-19 3D-QSAR methodologies to the Benzylidene,20 scaffold of cyclooxygenase-2 
inhibitors. The predictiveness of each of our optimized model was evaluated using test set of four 
compounds that were not included in the model. The distribution point maps derived from kNN-
MFA 3D-QSAR models permitted an understanding of the steric and electrostatic requirements for 
ligand binding. 

 
 
2. Results and discussion 
 
Results 
 
The kNN-MFA technique was used to derive 3D-QSAR model for Benzylidene 

derivatives which inhibits cyclooxygenase-2. The in vitro inhibitory activity (IC50 values) in µM, 
were converted to pIC50, was used as dependant variable. Relative alignment of all the energy 
minimized molecules was then carried out by using two techniques namely atom and template 
based for better results and better assessment between both. The kNN-MFA models were 
generated by using training set of 15 compounds (Table 1). The 3D-QSAR models were validated 
using a test set of 04 compounds (Table 1).  

 
 

Table 1. Structures of the Training and Test Set Compounds 

X

N

O

HO

R

R
R2

R1

 
 

Training Set Compounds 
Sr.No. R R1 R2 X IC50 (µM)# 
TR 1 t-Bu H NHOH S 1.5 
TR 2 t-Bu H NHOET S 3.2 
TR 3 t-Bu H NHO-allyl S 2.7 
TR 4 t-Bu H NHC(=NH)NH2 S 21 
TR 5 t-Bu H NCH3OCH3 S 18 
TR 6 t-Bu H NHCN S 55 
TR 7 i-Pr H NHC(=NH)NH2 S 1.8 
TR 8 t-Bu H SCH3 S 1.8 
TR 9 t-Bu H NHOET O 79 
TR 10  t-Bu H NHO-allyl O 26 
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TR 11  t-Bu H SH NH 0.26 
TR 12  t-Bu H OH S 4.7 
TR 13  t-Bu H OH O 34 
TR 14 t-Bu CH3 NHC(=NH)NH2 S 12 
TR 15 t-Bu H SH S 1.5 

Test Set Compounds 
T 1 t-Bu H NHOCH3 S 1.5 
T 2 i-Pr H NHOCH3 S 3.2 
T 3 t-Bu H NHC(=NH)NH2 O 2.7 
T 4 t-Bu H NHC(=NH)NH2 NCH3 21 

 
                              #Observed activity pIC50= (-logIC50 (µM)) 
External predictions were used to select best model. Results from PLS analysis are reported in 
Table 2.  
 

Table 2. Results of kNN-MFA Models by PLS analysis 
 

Parameter Model A Model-B 

n 15 15 
r2 0.9638 0.9000 
q2 0.9186 0.7129 

F test 97.7116 54.0052 
r2

pred 0.75 0. 68 
ZScore  2.84706 2.66063     

α >0.0001 >0.001 
k/vn 2/4 2/4 

Components 
(Contribution) 

E_709 (23), 
E_852(31) 
E_1006(29), 
S_701(17) 

 

E_641(-35), 
E_836 (23), 
S_513 (-26), 
S_801(16) 

 
 

To ascertain the true predictivity of the model, applying leave-one-out method of cross 
validation using weighted k-nearest neighbor was performed for all the analysis.  

Model-A, the atom based alignment shows a q2 (cross validated r2) of 0.92 with four 
descriptors namely E709, E852, E1006 and S701. A non-cross-validated r2 of 0.96, F value of 
97.71and number nearest neighbors k of 2 were observed with this model. i.e all the values are 
proved statistically significant.   The steric and electrostatic contributions were 17 and 83 %, 
respectively and exhibited good external prediction with r2

pred of 0.75. Statistical significance of 
the model indicated by Z score value of 2.847 and α of >0.0001. 

Model-B, the kNN-MFA model generated from template based alignment showed q2 
(cross validated r2) of 0.71 with four descriptors namely E641, E836, S513 and S801. A non-cross-
validated r2 of 0.90, F value of 54.00 and number nearest neighbors k of 2 were observed with this 
model.  The steric and electrostatic contributions were 58 and   42 %, respectively and exhibited 
good external prediction with r2

pred of 0.68. Statistical significance of the model indicated by Z 
score value of 2.66 and α of >0.001. 

With the view of  all above also based on the predictive (Table 4 and 5) ability of two 
kNN-MFA models, analysis A, the model generated with atom based alignment and four 
components exhibits good predictive ability  r2

pred of 0.75. 
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Table 4.  Actual Activity, Predicted Activity and Residual values of Training set 
Compounds. 

 
Sr. No pIC50 pIC50

a pIC50 
b Residualsc 

TR 1 -0.176 -0.116 -0.876 -0.7 
TR 2 -0.505 -0.554 -0.823 -0.318 
TR 3 -0.431 -0.387 -0.925 -0.494 
TR 4 -1.322 -1.383 -1.272 0.05 
TR 5 -1.255 -1.558 -1.161 0.094 
TR 6 -1.740 -1.717 -1.061 0.679 
TR 7 -0.255 -0.173 -0.308 -0.053 
TR 8 -0.255 -0.278 -0.308 -0.053 
TR 9 -1.898 -1.548 -1.407 0.491 

TR 10  -1.494 -1.465 -1.297 0.197 
TR 11  0.585 0.374 0.065 -0.52 
TR 12  -0.672 -1.070 -0.308 0.364 
TR 13  -1.531 -1.059 -1.478 0.053 
TR 14 -1.079 -1.256 -1.419 -0.34 
TR 15 -0.176 -0.010 0.379 0.555 

Observed activity pIC50= (-logIC50 (µM)),  apredicted activity for atom based alignment (Model -
A). bpredicted activity for template based alignment (Model -B).c residuals considering best model-
A 
 

Table 5. Actual Activity, Predicted Activity and Residual values of test set 
Compounds. 

 
Sr No pIC50 pIC50

a pIC50 
b Residualsc 

T 1 -0.230 -1.388 -0.133 -0.097 
T 2 0.244 -1.047 -1.034 1.278 
T 3 -0.707 -1.478 -3.265 2.558 
T 4 -1.908 -0.308 -1.095 -0.813 

Observed activity pIC50= (-logIC50 (µM)),  apredicted activity for atom based alignment (Model -
A). bpredicted activity for template based alignment (Model -B).c residuals considering best model-
A 
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Fig. 1. A graph of actual verses predicted activities of the training and test set molecules 
from atom-based alignment (Model-A). 
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Negative values of electrostatic field descriptors (blue) indicates that negative electronic 
potential is required to increase activity and more electronegative substituents group is preferred in 
that position, positive range indicates that group that imparting positive electrostatic potential is 
favorable for activity so less electronegative group is preferred in that region. 

Steric descriptors (green), negative range indicates that negative steric potential is 
favorable for activity and less bulky substituents group is preferred in that region, Positive value of 
steric descriptors reveals that positive steric potential is favorable for increase in activity and more 
bulky group is preferred in that region. 

 
Discussion 
 
Three-dimensional quantitative structure activity relationship by k-nearest neighbor 

molecular field analysis were performed on series of 19 molecules belonging to benzyledene 
derivatives which inhibits cyclooxygenase-2. The lowest energy conformation of most active 
compound TR-11 was used as template for 3D-QSAR studies. 

The alignment of the compounds is one of the critical inputs for kNN-MFA studies. The 
alignments define the putative pharmacophore for the series of ligands. In the present study we 
have aligned the ligands onto a template structure compound TR-11 using two alignment rules. 
These alignments were validated using kNN-MFA studies. The kNN-MFA models were validated 
by predicting the activity of external test set.  

The PLS analyses on two alignments (atom and template based) are reported in Table 2. 
The atom based alignment shows better r2 values than template based alignment. This indicates 
that all ligands have to be superimposed by the template structure used for alignment. This 
superimposition produced a good external prediction. The template based fitting of ligands did not 
improve the predictiveness of the model. This shows that exact superimposition of ligands is 
essential for good predictions. 

A Cross-validation analysis was also performed by applying leave-one-out technique 
using weighted k-nearest neighbor method. 

It is known that the CoMFA method provides significant value in terms of a new molecule 
design, when contours of the PLS coefficients are visualized for the set of molecules. Similarly, 
the kNN-MFA models provide direction for the design of new molecules in a rather convenient 
way. The points which contribute to the kNN-MFA model in data set are termed as the distribution 
point map. The range of property values for the chosen points may aid in the design of new potent 
molecules. The range is based on the variation of the field values at the chosen points using the 
most active molecule and its nearest neighbor set. These points show regions that are important for 
variation in activity of these data sets. 

The 3D-kNN-MFA distribution point maps are shown in Figure 2. Align molecules are 
displayed in map to assist in illustration. kNN-MFA steric points (green) indicate that areas in 
which steric bulk subsistent might have a favorable (positive range) or disfavorable (negative 
range) effect on the activity of an inhibitor. A positive contribution of steric descriptor near the 
substituent at 2 position of thiazolone/ oxazolone ring indicates that sterically bulky group is 
required in this reign. This can be also seen with compound T-4 and TR-3, in which replacing 
sterically less bulky hydrozonoformamide group with sterically bulky allyloxyamino group, results 
in increase of inhibitory activity of compound. In fact most of favorable regions are found 
surrounding the thiazolone/ oxazolone ring and R4 substituents, which define open pocket of the 
active site of cyclooxygenase-2, indicating a possibility of possible structural modifications of the 
functional COX-2 inhibitors may prove for improve inhibitory activity.  
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Fig. 2. Distribution of chosen points in kNN-MFA method for atom-based alignment (Model-A).  
 
 

 
kNN-MFA electrostatic points (blue) indicate that areas in which electronegative 

subsistent might have a favorable (negative range) or disfavorable (positive range) effect on the 
activity of an inhibitor. A positive contribution of electrostatic descriptors near the thiazolone/ 
oxazolone and R4 substituents indicates less electronegative substituent are favorable in that 
region, that effect can be seen with compounds TR-9 and TR-11, in which replacing more 
electronegative oxygen with nitrogen and ethoxyamino group with thiol group, respectively, 
results in increase of inhibitory activity of compounds.  An important feature of kNN-MFA model 
is that the electrostatic points are dominated by the region disfavorable to positive charges. Such a 
region is mostly observed surrounding the thiazolone/ oxazolone rings, functional mimetic in the 
catalytic biding cavity, indicating that compounds with less electron density are preferred in the 
active binding pocket. 

Conclusions 
 
The 3D-QSAR study of 19 benzyledene derivatives which inhibits cyclooxygenase-2 was 

carried out using kNN-MFA method with the abet of atom based and template base methods. We 
find that the atom based alignment shows this superimposition produced a good external 
prediction. The kNN-MFA model obtained from atom based alignment having better r2 values than 
template based alignment. This indicates that all ligands have to be superimposed by the template 
structure used for alignment. Also it showed good correlation with biological and predictive 
ability. Steric and electrostatic fields were found important for cyclooxygenase-2 inhibitory 
activity as exemplified by the higher predictive power of the kNN-MFA model. The results 
obtained from the 3D-QSAR models were found to accurately predict the cyclooxygenase-2 
inhibitory activity of structurally diverse test set of compounds and to yield reliable clues for 
further optimization of benzyledene derivatives in the data set. 

 
Experimental Section  
 
Data Set and Biological Activity: 
The training and test sets used to comprise a series of benzylidene derivatives, which 

inhibits cyclooxygenase-2 (COX-2) enzyme. The IC50 values, in µM, were converted to pIC50 (-log 
IC50) values, which were used as dependant variables in the 3D-QSAR study. Training set (15 
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compounds) and the test set (04 compounds) were selected by considering the fact that the test set 
compounds represents structural diversity and a range of biological activities similar to that of 
training set. Compounds in test set allowed us to use one test compounds per three training 
compounds thus resulting in more rigorous validation of the training model. In addition, a wide 
range of structural diversity of compounds in the test set permit us to evaluate the extrapolative 
accuracy of the QSAR models. The structures of the compounds in the training and test sets are 
shown in Table 1.  

Molecular Modeling: 
The 3D-QSAR computations were carried out using VLife Molecular Design Suite.21 All 

the molecules were drawn and converted to 3D structures in draw module of VLife MDS. Energy 
minimization were performed using the MMFF94,22 force field and Gasteiger-marsili,23charges 
followed by AM-1 (Austin Model-1) Hamiltonian method available in MOPAC module with the 
convergence criterion 0.001 kcal/mol Å. 

Alignment Rules: 
The position of each atom is important for kNN-MFA because the descriptors were 

calculated based on the 3D space grid. Thus, the method to determine the conformation of each 
molecule and the way to align molecules together are two sensitive input parameters to build 
reasonable model.24  In the present study two deferent alignment rules were adopted. 

Alignment 1: 
This alignment involves RMS fitting (atom-based) of heavy atoms of ligands. The 

compounds were fitted to the template molecule, compound TR-11.  Figure 1,  
The alignment maximizes the overlap of the heavy atoms. 
 

OH
N
H

N

O

SH1
2

3

4

5

 
 

Fig. 1. compound TR-11 used as a template for atom based alignment. The atoms for 
alignment are numbered 1-5. (Note- the atom numbering does not follow IUPAC rules). a) 
Oxygen atom of hydroxyl group (1). b) C1 atom of aromatic ring (2). c) C4 atom of 
aromatic ring (3). d) C5 atom of heterocyclic ring (4) e) C2 atom of heterocyclic ring (5). 

 
Alignment 2: 
Alignment of the molecules was carried out by flexible fitting of the atoms of the ligands 

to the template molecule, compound TR-11. 
k-Nearest Neighbor (kNN) Method:  
The kNN methodology relies on a simple distance learning approach whereby an unknown 

member is classified according to the majority of its k-nearest neighbors in the training set. The 
nearness is measured by an appropriate distance metric (e.g., a molecular similarity measure 
calculated using field interactions of molecular structures). The standard kNN method is 
implemented simply as follows 25: (1) calculate distances between an unknown object (u) and all 
the objects in the training set; (2) select k objects from the training set most similar to object u, 
according to the calculated distances and (3) classify object u with the group to which the majority 
of the k objects belongs. An optimal k value is selected by optimization through the classification 
of a test set of samples or by leave-one out cross-validation. The variables and optimal k values 
were chosen using different variable selection methods as described below. 

kNN-MFA 3D-QSAR Models: 
To derive the kNN-MFA descriptor fields, a 3D cubic lattice grid in x, y and z directions, 

was created to encompass the aligned molecules. kNN-MFA descriptors were calculated using an 
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sp3 carbon probe atom with a van der Waals radius of 1.52 Å and a charge of +1.0  to generate 
steric field energies and electrostatic fields with the distance dependant dielectric at each lattice 
point. The steric and electrostatic energy values were truncated at a default value of 30 kcal/mol. 

PLS analysis: 
The partial least squares method (PLS), 26-28 was used to derive a linear relationship and 

cross-validation was performed using leave-one out method,29,30 to check consistency and 
predictiveness.  

Cross-Validation Using Weighted k-Nearest Neighbor: 
The standard leave-one-out procedure was implemented as summarized as follows.  
(1) A molecule in the training set was eliminated, and its biological activity was predicted 

as the weighted average activity of the k most similar molecules (eq 1). The similarities were 
evaluated as the inverse of Euclidean distances between molecules (eq 2) using only the subset of 
descriptors corresponding to the current trial solution.  

 
exp( -dj) 

     wi = 
Σ    exp( -dj) 

               k-nearest neighbors 
 
 

ŷi = Σ wi yi      (1) 
 

Vn 
dij = [ Σ (Xi,k – Xj,k )2]1/2 

       (2) 
k =1 

                                                                     
(2) Step 1 was repeated until every molecule in the training set has been eliminated and its activity 
predicted once. (3) The cross-validated r2(q2) value was calculated using eq 3, where yi and yˆi 
are the actual and predicted activities of the ith molecule, respectively, and ymean is the average 
activity of all molecules in the training set. Both summations are over all molecules in the training 
set. Since the calculation of the pairwise molecular similarities, and hence the predictions, were 
based upon the current trial solution, the q2 obtained is indicative of the predictive power of the 
current kNN-MFA model. 
        Σ (yi - ŷi)2  
                                                q2 = 1-   
                               Σ ( yi – ymean)2               (3) 
 

(4) Steps 1-3 were repeated for k 2, 3, 4, etc. Formally, the upper limit of k is the total 
number of molecules in the data set. However, the best value has been empirically found to lie 
between 1 and 5. The k value that led to the highest q2 value was chosen for the current kNN-
MFA model.31 

External Validation: 
The following procedure was applied for external validation.  
(1) Predict the biological activity of a molecule in the test set as the weighted average 

activity of the k most similar molecules in the training set (eq 1). The similarities were evaluated 
as the inverse of Euclidean distances between molecules (eq 2) as calculated using the descriptors 
determined by the current model. 

 (2) Step 1 was repeated for every molecule in the test set. 
 (3) The predicted r2 (pred•r2) value was calculated using eq 4, where yi and yˆi are the 

actual and predicted activities of the ith molecule in test set, respectively, and ymean is the average 
activity of all molecules in the training set. Both summations are over all molecules in the test set. 
The pred•r2 value is indicative of the predictive power of the current kNN-MFA model for 
external test set. 
 
                                                   Σ (yi - ŷi)2  
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                                      pred_r2  = 1-   
                              Σ ( yi – ymean)2                      (4) 

Randomization Test: 
To evaluate the statistical significance of the QSAR model for an actual data set, we have 

employed a one-tail hypothesis testing.
 
The robustness of the QSAR models for experimental 

training sets was examined by comparing these models to those derived for random data sets. 
Random sets were generated by rearranging biological activities of the training set molecules. The 
significance of the models hence obtained was derived based on calculated Z score.31,32 

 
Evaluation of the QSAR Models: 
The QSAR models were evaluated using following statistical measures: n, number of 

observations (molecules); Vn, number of descriptors; k, number of nearest neighbors; q
2
, cross-

validated r
2 

(by the leave-one-out method); pred•r
2
, predicted r

2 
for the external test set; Z score, 

the Z score calculated by q
2 

in the randomization test; best•ran•q
2
, the highest q

2 
value in the 

randomization test; and R, the statistical significance parameter obtained by the randomization 
test.  

For predicting the activity of a molecule, regression methods use the following equation  
 

Activity = C0+ C1D1+C2D2+…….+ CNDN 
 
where Ci’s are coefficients and Di’s are descriptors. 
In the case of the kNN-MFA method, the activity of a molecule is predicted using 
 

Activity = C1A1+C2A2+…….+ CkAk 
 
where Ci’s are weights and Ai’s are activities of the k-nearest neighbors in the training set. The 
nearest neighbors of any molecule are obtained from calculating the distance between the 
descriptors selected from various variable selection methods, described above. Thus, kNN-MFA 
prediction uses an interpolative method, and hence predicted activities of new designed molecules 
will be within the range of activities of molecules in training set. Since the kNN method is based 
on distances of descriptors, their interpretation is quite difficult compared to the regression models. 
Although several models are generated by the kNN-MFA method, the time required for obtaining 
results is significantly more than for the CoMFA method.  
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