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A topological index of a graph G is a number Top(G) which is invariant under graph 
isomorphism. The Wiener and Szeged indices are two important distances based 
topological index applicable in nanoscience. The aim of this paper is to compute these 
numbers for a new class of nanostar dendrimers. 
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1. Introduction 
 
Dendrimers are macromolecules comprised of a series of branches extending outward 

from an inner core. The word dendrimer originates from the Greek dendron, meaning “tree”. These 
mkolecules1 have attracted much attention because of their various electrical and optical properties.  

Suppose G is a simple graph, a graph without multiple edges and loops. The set of vertices 
and edges of G are denoted by V(G) and E(G), respectively. A topological index is a numeric 
quantity derived from the structural graph of a molecule. The number of vertices and edges are the 
simplest topological indices of graphs. The distance dG(u,v) (d(u,v) for short) between two vertices 
u, v ∈ V(G) is the length of a shortest path connecting them. 

The concept of “topological index” was first proposed by Haro Hosoya1 for characterizing 
the topological nature of a graph. Such graph invariants are usually related to the distance function 
and so named distance based topological index. The first topological index of this type was 
proposed in 1947 by the chemist Harold Wiener.2 It is defined as the sum of all distances between 
vertices of the graph under consideration.  

The Szeged index is a topological index introduced by Ivan Gutman3. To define the 
Szeged index of a graph G, we assume that e = uv is an edge connecting the vertices u and v. 
Suppose nu(e) is the number of vertices of G lying closer to u than v and nv(e) is the number of 
vertices of G lying closer to v than u. Then the Szeged index of the graph G is defined as Sz(G) = 
∑e=uv∈E(G)[nu(e)nv(e)]. Notice that vertices equidistant from u and v are not taken into account.  

The aim of this paper is to compute the Wiener and Szeged indices of a water-soluble 
polyaryl ether dendrimer4 G[n], see Figure 1. We encourage the reader to consult papers published 
bi Diudea and co-authors5-11 and our earlier papers12-20 for background material as well as basic 
computational techniques. Our notations are standard and taken mainly from the standard book of 
graph theory. 
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Fig. 1. The Molecular Graph of Dendrimer Nanostar G[4]. 
 
 
 

2. Main Results and discussion 
 
In this section the Wiener index of the molecular graph G[n] is computed. Let G be graph. 

A subgraph S of G is called convex if for each vertex x,y ∈ V(H) there exists no shortest path in G 
from x to y which involves a vertex w ∈ V(G) − V(H). If G and H are graphs such that V(H) ⊆ 
V(G) and E(H) ⊆ E(G) then H is said to be a subgraph of G. 

 
Fig. 2. The Graph of H[4]. 

 
Define H[n] to be the graph constructed from G[n] by deleting almost on half of its 

vertices and edges, see Figure 2. In an earlier paper21, we proved that if {Fi}1≤ i ≤k is a partition of 
E(G) such that for each i, 1 ≤ i ≤ k, G − Fi is a two component graph such that both of components 
are convex then W(G) = Σ1≤ i ≤k |V(GFi(1))|.|V(GFi(2))|, where GFi(1) and GFi(2) are two 
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components of G − Fi. If we omit an edge outside hexagons of G[n] then the components of new 
graph are easily convex. On the other hand, the graphs obtained from G[n] by deleting two non-
adjacent parallel edges of a hexagon are also convex. These subsets constitute a partition {Fi}1≤i≤k 
of E(G) and H[n] = G[n] – Fi has the required properties of the mentioned theorem. Define gn = 
|V(G[n])| and hn = |V(H[n])|. 

Then n ni i 1 n n 2
n i 0 i 1h 6 2 2 4 2 5(2 2)+ +

= == × + + × = −∑ ∑ and n 3
n ng 2h 16 5 2 4.+= + = × −  

Suppose a* = a(gn – a). Then we have: 
 

Theorem 1. The Wiener index of G[n] is computed as follows: 
 

W(G[n]) = 502 – 3440.4n + 8000.n.4n + 28000.n.2n + 8548.2n 
 

Proof. Consider a hexagon C6 in H[n] ≤ G[n]. From Figure 3, one can see that G[n] – 
{e1,e4} has exactly two components, both of them are convex and one of the components has hα - 3 
vertices, 0 ≤ α ≤ n. We notice that the number of such hexagons is 2n-α. Similarly, G[n] – {e2,e5} 
and G[n] – {e3,e6} have also two components, both of them are convex and one of their 
components has hα-1 + 5 vertices, 0 ≤ α ≤ n. Suppose e is an edge outside cycles of G[n]. Then 
G[n] – e has exactly two convex component. One of these components has hβ, hβ + 1 or hβ + 2 
vertices and the number of such edges is 2n-β, 1 ≤ β ≤ n. For α = 0, one can see that there is 2n 
hexagons and G[n] – {e1,e4}, G[n] – {e2,e5} and G[n] – {e3,e6} have exactly two components, 
where both of them are convex and one of them has 7 vertices. There is a similar argument for 
other edges of G[n] and so there is a partition {Fi}1≤i≤r in which G – Fi has two convex components. 
Therefore,   

 
 

 
 

Fig. 3. The Position of Edges in a Hexagon. 
 
 

 
 

Fig. 4. The Core of G[n]. 
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On the other hand, if S is the core of G[n], then we have: 
*

* n
n n n ne S

gm(e) 2[h (h 1) * (h 2) * 3(h 5)*] .
n∈

⎛ ⎞= + + + + + + + ⎜ ⎟
⎝ ⎠

∑  

Therefore, W(G[n])  = 2Σe∈H[n]m(e) + Σe∈Sm(e) = 502 – 3440.4n + 8000.n.4n + 28000.n.2n + 
8548.2n. This completes our proof.                                                                
 
Theorem 2. The Szeged index of G[n] is computed as follows: 

Sz(G[n]) = 726 + 11200n4n + 3920.n.2n – 3600.4n + 11592.2n 
Proof. Choose the set F = {uv}, where uv is an edge outside hexagons of G[n]. By definition of 
the Szeged index and partition of edges described in the proof of Theorem 1, nu(e)nv(e) = 
|V(GF(1))|.|V(GF(2))|. Similarly, if F = {uv,ab} then nu(e)nv(e) = na(e)nb(e) = 
|V(GF(1))|.|V(GF(2))|. So, by a similar argument as Theorem 1,  

n 1 i n 1
u v n i n i 1 n 7e uv E(H[n]) i 0

n i
n i n i n ii 1

n
n n n

* n
u v n n n ne uv E(S)

n (e)n (e) 2 2 [(h 3) * 2(h 5)*] 2 .3.(g ) *

2 [(h 2) * (h 1) * (h )*]

2 [2(g 1) * (g 2) * (g 4)*],

gn (e)n (e) 2[h (h 1) * (h 2) * 3.2(h 5)*]
n

− +
− − − −= ∈ =

− − −=

= ∈

= − + + +

+ + + + +

+ − + − + −

⎛= + + + + + + +
⎝

∑ ∑
∑

∑
*
.⎞

⎜ ⎟
⎠

 

Therefore, Sz(G[n])  = 2Σe=uv∈E(H[n])nu(e)nv(e) + Σe=uv∈E(S)nu(e)nv(e)  = 726 + 11200n4n + 3920.n.2n 
– 3600.4n + 11592.2n, which completes our argument.                   
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