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Four antibiotics from the cephalosporin class were used for the evaluation of controlled 
release behaviour. Plasma processed magnetic nanoparticles (C-Fe) were characterized by 
HR-TEM. Cephalosporins were deposed on magnetic nanoparticles by adsorbtion and the 
antimicrobial activity of cephalosporins and C-Fe/cephalosporins (cephachlor, cefuroxime, 
cefotaxime, and ceftriaxone) was tested. Two collection strains: Staphylococcus aureus 
ATCC 25923 and Escherichia coli ATCC 25922, were used for assessing the 
antimicrobial activity of corre/shell type nanoparticles. Controlled release of nanoparticles 
deposed antibiotics was studied by using a biological assay and an electrochemical 
aproach. The antimicrobial effect and its time dependence of the C–Fe/cephalosporins was 
studied by difusimetric method, comparing the groth inhibition zones determined from the 
functionalised nanoparticles and standardized antibiotic discs. longer exposure times 
emphasizing the increasing effect.   The conductimetric method revealed the controlled 
release by measuring suspension conductivity at various times. We can conclude that the 
obtained adsorption shell C-Fe/cephalosporin nanostructures can be used as carriers for the 
controlled release of cephalosporins. 
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1. Introduction 
Nanoparticles have a major impact in the medical[1,2] and pharmaceutical area[3,4]. From 

drug delivery systems to medical implants, their broad application field captured the interest of 
many researchers. Strategies for biofilms’ development [5] and bypassing the antibiotic resistance 
mechanism of different bacterial strains [6] are being studied worldwide. Carbon nanotubes are 
used to inhibit different bacterial strains such as E. coli, which is one of the most spread etiological 
agents involved in intestinal infections [7]. 

Kang S. et al. (2007) [8] have evaluated the toxicity of four types of carbon 
nanomateriales: single-walled carbon nanotubes, multi-walled carbon nanotubes, C60 
nanoparticles in aqueous phase and colloidal graphite, using gram positive and gram negative 
bacteria. Single-wall nanotubes (SWNT) shows inhibition for Escherichia coli, Pseudomonas 
aeruginosa, Bacillus subtilis, and Staphylococcus epidermis monocultures, as well as for different 
microbial communities of river waters and wastewater effluents. The bacteriostatic activity was 
demonstrated to be time dependent, longer exposure times emphasizing the monoculture toxicity 
with initial tolerance for SWNT’s. 
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Kang S. et al. (2007–2009) 9, 10, 11] evaluated the antimicrobial activity of highly 
purified single-walled nanotubes, demonstrating their capacity as building blocks for antimicrobial 
materials. By using single-walled carbon nantotubes (SWNT) with a narrow diameter distribution, 
the cell membrane damage resulted from the direct contact with the SWNT aggregates was 
observed. Jia G. et al. [12] evaluated a cytotoxicity test protocol for single-walled nanotubes, 
multi-walled nanotubes (with a diameter ranging from 10 to 20 nm) and fullerenes (C60). The high 
cytotoxicity of MWNT in the alveolar macrophage (AM) after a six hours in vitro exposure was 
observed. The cytotoxicity was increased up to 35% as the multi-walled nanotubes dosage 
increased with 35 µg/cm2. Up to a 226 μg/cm2 dosage, no significant cytotoxicity was observed for 
C60. The cytotoxicity seems to follow a mass sequence basis: SWNT > MWNT10 > quartz > C60. 
Carbon nanotubes with various geometrical structures present a quite different cytotoxicity and in 
vitro bioactivity, although these properties might not be exactly reflected in the comparative in 
vitro toxicity. Nepal D. et al. [13] developed single-walled carbon nanotubes coatings, with 
controlled morphology, by using the layer-on-layer assembly. These showed clearly a high 
antimicrobial activity, the thickness being controlled up to 1.6 nm and the nanotubes orientation 
with an oriented air stream. This unique mixture of multifunctionality and vertical and lateral 
control of the assembly process [9, 14] is a significant advance in the development of macro scale 
assemblies with combined attributes of SWNT and natural materials [15, 16]. In our study, 
bioassay and electrochemical evaluation of controlled release behavior of cephalosporins from 
magnetic nanoparticles was tested and compared. 

 
 
2. Materials and methods 
 
2.1 Microbial strains.  
 
Two collection strains: Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 

25922, were used for assessing the antimicrobial activity of corre/shell type nanoparticles. 0.5 
McFarland bacterial suspensions were obtained from 15-18h cultures grown on solid medium. 

 
2.2 Reagents.  
 
All of the analytical grade solvents and reagents were purchased from Merck (Darmstadt, 

Germany). Standardised antibiotic disks (30µg/mL) from HiMedia Laboratories were used for 
bioassay studies. The tested antibiotics (were purchased as injectable powder) belong to the second 
and third generation of cephalosporins: cephachlor, cefuroxime, cefotaxime, and ceftriaxone.  

 
2.3 Synthesis and characterization of magnetic nanoparticles 
 
Magnetic nanoparticles, C-Fe (toluene) and C-Fe (benzene/aniline), obtained by toluene and 

benzene/aniline mixture plasma processing, were purified as following: ▪ solvent extraction 
(successively with benzene, dichloromethane and o-dichlorobenzene); ▪ inorganic impurities removal 
(concentrate warm nitric acid / hydrochloric acid mixture); ▪ washing (ultra-pure water); ▪ high 
temperature (>3000C) treatment. The primary characterization method was HR–TEM (Figure 1, 2). 
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Fig. 5. Cephalosporins release profile from magnetic nanoparticles 
 
 

3. Results and discussion 
 
3.1 Antimicrobial activity 
 
The growth inhibition zones for the two tested strains are presented in fig.no. 6 and 7, 

showing the strains’ sensitivity of the tested core/shell materials. The inhibition zones dimeters 
raise as the exposure time to loaded nanoparticles increases. This dynamic of growth inhibition 
zones exhibited the controlled release of antibiotic, which gradualy difuses in culture medium. 

 
3.2 Controlled release profile of Cephalosporins from magnetic nanoparticles 
 
The release profile (fig.no.5) shows lower release levels from C-Fe/B-A support, related to 

higher surface polarity (by nitrogen inclusion), for all tested compounds. Also, C-Fe/B-A and C-
Fe/T support shows significant lower release levels in comparison with reference sample (much 
over 3600s partial release time in comparison with 500s maximum release time for the reference 
material). 
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The gradual release profile, from C-Fe/B-A and C-Fe/T nanostructurated support in 
aqueous solution, proves differentiate release levels related to support structural differences, 
significant lower amount of released compound versus reference and significant time dependent 
release mechanism changes. Due to the possibility of a stronger interaction between the active 
compound and nitrogen doped nanoparticles, we concluded that C–Fe/ benzene–aniline 
nanoparticles prove a better release of the active compound than C–Fe/toluene ones. The 
antimicrobial effect of active substances of C–Fe magnetic nanoparticles was proved on 
Staphylococcus aureus and Escherichia coli, using a Mueller–Hinton medium, by comparison of 
the inhibition diameter. The conductometric profile sustain also the antibiogram interpretation.  
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