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In this paper, we explore the three-dimensional conductivity within the variable-range 

hopping regime for glassy chalcogenides via the Coulomb glass model.  We first develop a 

theoretical approach based on an extension of the two-dimensional percolation theory and 

then we perform numerical simulations to confirm the validity of the theory. From the 

theoretical results we obtain a prefactor of the type 𝑇𝛾 for the 3D Efros-Shklovskii law, 

where 𝑇 is the temperature of the system and 𝛾 is a characteristic exponent different from 

1, which is found for the two-dimensional problem. From the numerical simulations we 

verify the theoretical results and find that characteristic parameters for the 3D Efros-

Shklovskii law are consistent with those found in the literature. 
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1. Introduction 
 

Coulomb glasses (CG) are strongly localized systems in which the blend of disorder and 

long-range Coulomb interaction plays a key role [1]. CG exhibit glassy behavior, showing slow 

relaxation, loss of ergodicity and aging, among other phenomena, and present a gap in the single-

particle density of states near the Fermi level, which expression at zero temperature is [2]: 

 

                                                  𝑔(𝜖) ∝ |𝜖 − 𝜖𝐹|𝑑−1.                                                                   (1)   

 

In this expression, 𝑑 is the dimension of the problem, 𝜖 is the site energy and 𝜖𝐹 is the 

energy corresponding to the Fermi level. For non-zero temperature, the bottom of the Coulomb 

gap is rounded near the Fermi level.  

The standard tight-binding Hamiltonian describing the system in presence of an external 

electric field is [1]: 

 

                             𝐻 = ∑ 𝜙𝑖𝑛𝑖

𝑖

+ ∑
(𝑛𝑖 − 𝐾)(𝑛𝑗 − 𝐾)

𝑟𝑖𝑗
𝑖<𝑗

+ ∑ ℰ

𝑖

𝑥𝑖 ,                                   (2) 

 

where 𝜙𝑖 a random site potential, chosen from an uniform distribution of amplitude W, 𝑛𝑖 is the 

occupancy number of site i (which can equal 0 or 1), 𝑟𝑖𝑗 is the distance between sites i and j and K 

is the compensation, to guarantee the electrical neutrality of the system. The electric field is 

denoted as ℰ, being 𝑥𝑖 the horizontal component of the position vector of the i-th impurity. 

The CG model describes a broad spectrum of materials and systems, for instance, lightly 

doped and amorphous semiconductors, high temperature semiconductors, disordered and granular 

metals, vortex in superconducting films, and conducting polymers, modeling interesting 
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phenomena such as hopping conductivity in 𝜆-ADN chains [3]. The connection between glassy 

chalcogenides and Coulomb glasses has been revealed in some recent publications [4-7].  

Conductivity in CG lies into the so-called variable-range hopping regime, following the 

Efros-Shklovskii law (ES law) [1]: 

 

                                  𝜎𝑇𝛾 = 𝜎0 exp [− (
𝑇0

𝑇
)

1/2

] ;       𝑇0 =
𝛽0𝑒2

𝜅𝜉
,                                          (3) 

 

where 𝜎 is the conductivity, 𝜎0 is a constant, T is the temperature, 𝑒 is the electron charge, 𝜅 is the 

dielectric constant and. Parameters 𝛾 and 𝛽0 depend on the dimension of the system. 

 In two-dimensions, percolation theory demonstrates that 𝛾 = 1 ,  and numerical 

simulations show compatible results with theory [1]. The calculus starts from the theory of Miller 

and Abrahams, who associated a resistance to each pair of sites of the CG model, provided that its 

current, 𝐼𝑖𝑗  is proportional to the electric field ℰ  and inversely proportional to T. The original 

expression for the resistance between sites i and j is [8]: 

 

                                                 𝑅𝑖𝑗 = 𝑅𝑖𝑗
0 exp (

2𝑟𝑖𝑗

𝜉
+

𝜖𝑖𝑗

𝑘B𝑇
),                                                    (4) 

 

where 𝜉  is the localization length, 𝑘B  is Boltzmann’s constant, 𝑅𝑖𝑗
0  is a constant and 𝜖𝑖𝑗  is an 

energy factor that depends on the site energy. 

In three dimensions, numerical studies for determining 𝛾 are still scarce and, in general, 𝛽0 

in Eq. (3) does not match with theory by choosing 𝛾 = 1, as occurs for the 2D situation. One 

problem arising in the three-dimensional case is that Ohm’s law should be recovered when the 

system is large enough [3]: 

 

                                                             𝑅 ∝ 𝜌
𝑙𝑑−2

𝐿𝑑−2
,                                                                       (5) 

 

where 𝜌 is the resistivity of the system, 𝑑 is the dimension,  𝐿 is the length of the sample and  𝑙 is a 

particular length from which the system is approximately uniform. 

In this paper, we investigate both theoretically and numerically the dependence of 

conductivity in three-dimensional CG on prefactor 𝑇𝛾 , by extending the two-dimensional 

approach to the three-dimensional case, taking into account Eq. (5) for large systems. We report 

numerical simulations of the 3D ES law in order to compare parameter 𝛽0 with literature, finding a 

good agreement between them. The results model the 3D conductivity of glassy chalcogenides at 

very low temperatures within the variable-range hopping regime. 

 

 

2. Percolation theory applied to three-dimensional Coulomb glasses 
 

The first application of Miller and Abrahams’ theory was the determination of local 

conductivities. These calculations used to fail because some resistances of the set took values 

much smaller than the rest, thus affecting the value of the averaged quantities. That is why 

theoretical efforts derived towards the calculation of conductivity via percolation approaches 

[9,10], which has been invested as the most effective theory to obtain relevant results. From 

equation (4) we can define, for convenience: 

 

                                                  𝜁𝑖𝑗 =
2𝑟𝑖𝑗

𝜉
+

𝜖𝑖𝑗

𝑘B𝑇
.                                                                       (6) 

 

It can be demonstrated that the distribution of these values for the whole sample is 

approximately uniform [11]. This fact leads to an exponential distribution of the resistances 
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associated to each pair of sites. It is possible to model the conductivity in CG as that of a network 

of interconnected resistors, where each of them takes the value given by Eq. (4). The basic 

procedure of the percolation method is to connect the resistors smaller than a given one. The 

calculation involves finding the critical value of 𝜁𝑖𝑗, named 𝜁𝑐, for which an infinite network of 

interconnected sites exists. The resistance of the sample will be dominated by the links in which 

𝜁𝑖𝑗 is close to the percolation threshold. Resistances obeying 𝜁𝑖𝑗 < 𝜁𝑐 are part of the critical set. If 

we consider a limiting value greater than 𝜁𝑐, the conductivity still takes place through the critical 

network, because the distribution of resistances is exponential. Therefore, the conductivity in the 

system is governed by the value of the largest resistances within the critical set: 

 

                                                          𝜎 ∝ exp(−𝜁𝑐).                                                                    (7) 
 

The limitation of percolation theory for the calculation of 𝜎 comes from the crossover with 

Ohm's law, which should hold for sufficiently large sizes. This fact is equivalent to assume that 

new conducting paths emerge as a consequence of increasing the size of the system. In a 

qualitative way, in two dimensions and for an approximately square system, when considering 

larger sizes we find a much more complex percolation path, of almost fractal nature. The price 

paid for connecting more resistors in series is compensated with new paths arising in parallel. In 

this kind of systems it is found that percolation theory still remains valid for large sizes. On the 

other hand, Ohm's law is relatively easily verified for the three-dimensional case, where the 

resistance of the system, R, follows Eq. (5). 

A suitable method to determine in 3D the parameter 𝛾 for Eq. (3) is to consider the system 

as a network of random resistances, as discussed above. From Eq. (3), ES law, it can be stated that 

conductivity is governed by resistances 

 

                                                         𝑅𝑖 ∝ exp (
𝑎𝑖

𝑇
)

1/2

,                                                                (8) 

 

where {𝑎𝑖} represents a certain set of variables. We can consider that the network of resistances 

contributing to the conductivity consists of a set of exponential random resistances 

 

                                                          𝑅𝑖 = 𝑅0 exp  (𝜔𝑥𝑖),                                                            (9) 

 

where 𝑥𝑖 ∈ [0,1]. In this expression, 𝜔 is directly related to the factor 1/√𝑇. Since the distribution 

is exponential, for values 𝜔 ≫ 1  we can suppose that the largest resistors carry a negligible 

current, and can be removed from the set without the total resistance of the system being affected. 

An approximation to the total resistance could be obtained, as in the two-dimensional case, via 

percolation studies. Let us consider only resistances obeying 𝑥𝑖 < 𝑥𝑐, where 𝑥𝑐 is the percolation 

threshold. In this way, there will be a unique conductivity path and the total resistance of the 

system could approximated by the greatest of the series resistances of the path, the so-called 

critical resistance, which expression is 

 

                                                      𝑅𝑐 = 𝑅0 exp  (𝜔𝑥𝑐),                                                            (10) 

 

This approximation fails as said before because, for large sizes, Ohm's law must be 

verified, and the resistance of the system will be determined by Eq. (5). To improve the 

approximation for the 3D situation, let us increase the set of resistances above the percolation 

threshold. That is, resistances satisfying 𝑥𝑖 < 𝑥1, with 𝑥1 > 𝑥𝑐 are now considered. Thus, the total 

set forms an interconnected network, where we call 𝜆(𝑥1)  the typical length between two 

connections. The typical resistance of each branch, 𝑟(𝑥1), will be greater than 𝑅𝑐. For 𝑥1 not very 

far from 𝑥𝑐 we perform a Taylor-series expansion: 

 

                                        𝑟(𝑥1) = 𝑅𝑐[1 + 𝛼1(𝑥1 − 𝑥𝑐)𝑎 + ⋯ ],                                            (11) 
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where 𝑎  represents a certain exponent that does not depend on 𝜔 , although both 𝑅𝑐  and the 

coefficient 𝛼1 does. When the sample size is 𝐿 ≫ 𝜆 the conduction becomes ohmic, and the value 

of the resistance of the system follows Eq. (5): 

 

                                                  𝑅(𝐿) = 𝑟(𝑥1)
𝜆(𝑥1)𝑑−2

𝐿𝑑−2
.                                                         (12) 

 

Near the percolation threshold, we can consider that 

 

                                                  𝜆(𝑥1) = 𝑐(𝑥1 − 𝑥𝑐)−𝜈,                                                            (13) 
 

where 𝑐 is a constant and 𝜈 is a certain exponent that comes from the percolation calculation, 

which is independent of the selected network. Now we are looking for value of 𝑥1  which 

minimizes the resistance 𝑅(𝐿) and, therefore, optimizes the conduction. By taking 𝑑 = 3,  and 

substituting Eqs. (11) and (13) into Eq. (12): 

 

                                         
d𝑅(𝐿)

d𝑥1
⇒ (𝑥1 − 𝑥𝑐)𝑎 =

𝜈

𝛼1(𝑎 − 𝜈)
.                                           (14) 

 

We substitute this value in Eq. (12) and obtain that the value of the minimum resistance, 𝑅min, is: 

 

                                                       𝑅min(𝐿) ∝
𝑅𝑐

𝐿
𝛼1

𝜈
𝑎.                                                       (15) 

 

As an example, we can perform the calculation for a simple cubic network in 3D with a 

link model. Here, the percolation threshold is 𝑥𝑐 = 0.2488 [12]. We employ the units 𝑅0 = 1 and 

𝑐 = (𝑎 − 𝜈)/𝑎. In three dimensions, 𝜈 = 0.88 [13]. Taking 𝑎 = 1, from Eq. (15) we obtain the 

new expression: 

                                                        𝑅min(𝐿) ≈
exp(𝜔𝑥𝑐)

𝜔𝜈
.                                                      (16) 

 

Since we have argued that 𝜔 ∝ 1/√𝑇, the extra dependence on temperatures introduced 

by our approximation has the form 𝑇−𝜈/2. This fact, together with the dependence proportional to 

𝑇 , leads us to consider a prefactor 𝑇
(−

𝜈

2
)+1

 for the expression of the resistance, instead of 𝑇 . 

Regarding the conductivity, the prefactor is 𝑇
(

𝜈

2
)−1

, and so 𝛾 = (
𝜈

2
) − 1. Our system is equivalent 

to a tridimensional link model, so we can substitute the value 𝜈 = 0.88 and find the following 

dependence on temperatures for the expression of conductivity: 

 

                                                      𝜎𝑇0.56 ∝ exp [− (
𝑇0

𝑇
)

1
2

].                                                    (17) 

 

 
3. Numerical simulations of 3D conductivity. Results and discussions 
 

Numerical simulations for the ES law in 3D constitute a field yet to be explored. In models 

with positional disorder it is difficult to reach large sizes, which leads to finite-size effects at low 

temperatures, since the dimensions of the system are comparable to the typical hopping length. In 

fact, in three dimensions, 𝐿 = 𝑁1/3, and for a size N = 2000, which is yet difficult to compute, we 

obtain 
𝐿

2
= 6.3. For this reason it is hard to obtain a wide range of temperatures. In network 

models, simulation sizes may be a little larger, but they have the limitation that the hopping 
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distance must be much greater than the network parameter. This fact shortens the range of study 

temperatures, in the same way. 

We have employed the hybrid Monte Carlo algorithm of Tsigankov and Efros [14] to 

obtain data corresponding to the 3D conductivity in the linear regime for a system of variable size, 

within the temperature range 0.02 ≤ 𝑇 ≤ 1.5. Data for temperatures within the range 0.05 ≤ 𝑇 ≤
1.5 have been calculated for a system of size 2000. Below this temperature, finite-size effects gain 

importance. So, for lower temperatures we have computed systems of size 8000, with special 

interest in reaching the steady state and avoiding finite-size effects at lowest temperatures. After 

exploring the data, the range for obtaining the ES law is restricted to the interval 0.02 ≤ 𝑇 ≤ 0.08, 

narrower than in 2D simulations. This is due to the filling of the Coulomb gap for temperatures 

greater than 0.08. Largest temperatures were employed to verify the crossover with Mott's law and 

the activated regime [2], but none of them properly appear within the range considered. Additional 

numerical details can be found in previous literature [5-7]. 

We investigate the behavior of conductivity for semiconductor samples doped with 

impurities randomly placed, within the regime of strong localization. Transitions between states 

are held by electron jumps between impurities in the regime of variable range hopping [3]. The 

position of the electron matches that of the impurity since the localization length is considered 

quite small. We study samples of dimensions 𝑁 = 𝐿3, where 𝐿 is the lateral dimension. To show 

real experimental conditions, we build the system by implementing periodic boundary conditions, 

which simulates a more realistic experimental situation. The units employed are: 1/𝑙0 is the energy 

and temperature unit, whereas 𝑙0 = 𝐿/√𝑁  is the length unit, provided that both the electron 

charge, 𝑒, and Boltzmann constant, 𝑘B, are set equal to one. We consider systems with a minimum 

distance between sites equal to 0.2. The range of disorder is 𝑊 = 2 and the localization length is 

𝜉 = 1. The characteristic electron-phonon time, 𝜏0, has been employed as the unit of time. We also 

choose compensation 𝐾 = 1/2  and consider that each particle only interacts with its nearest 

image. Therefore, we do not perform Ewald summation. 

 

In Fig. 1 it is plotted 𝜎𝑇0.56 on logarithmic scale versus 𝑇−1/2 for the range 0.02 ≤ 𝑇 ≤
0.08. The data error is determined from the standard deviation of the conductivity of the samples, 

and is of the order of the point size. The linear dependence in the fitted region is very good, which 

confirms the validity of the the random resistor network approximation for determining ES law, 

Eq. (17). The straight line represents the linear fit of the data. From the slope we obtain a value 

𝛽0 = 3.40 ± 0.02, close to that proposed by Shklovskii and Efros [2], equal to 2.8. The error in 𝛽0 

is, as in 2D, merely statistical. 

 

 
 

Fig. 1. Dependence of conductivity 𝜎 on temperature 𝑇 within the range 0.02 ≤ 𝑇 ≤ 1.5. 

The linear fit corresponds to the range 0.02 ≤ 𝑇 ≤ 0.08, where the ES law is valid. The 

size of system is 2000 in the range 0.05 ≤ 𝑇 ≤ 1.5 and 8000 for lower temperatures. 

 

 

Once obtained 𝛽0, it is recommended to analyze the validity of the lowest temperature 

range considered. For a system of size 2000 we obtain 
𝐿

2
= 6.3. Employing our calculated value of 

𝛽0, the typical hopping length for 𝑇 = 0.05 is 2.1 [2]. This value is close to the dimensions of the 

https://reader.elsevier.com/reader/sd/12BD1D434D412CB13F1FB6CD2F3A63D4C70491ABD8DB72B7D032FCEF07A2FE2967EB852CE938C9B79D4DED200DD9FB30#pf2
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system, so it is not convenient to compute lower temperatures for this size. However, for N = 8000 

we obtain 
𝐿

2
= 10, dimensions that allow us to reach 𝑇 = 0.02, where the typical hopping length is 

equal to 3.3. The simulation of even lower temperatures becomes a difficult task. From 𝑇 = 0.02 it 

is necessary to consider sizes greater than 8000, along with the need to obtain longer times to 

reach the steady state. 

 

 

4. Conclusions 
 

In this paper we investigate the form of the 3D ES law for glassy chalcogenides via the 

Coulomb glass model. The two-dimensional case has been extensively study via percolation 

theory, finding a good agreement between theory, experiments and simulations. However, studies 

in the three dimensional case are still scarce. In our work, we extent the 2D percolation theory 

taking into account that for greater sizes of the system Ohm’s law must be recovered. This fact 

leads to a temperature prefactor in 3D ES law with and exponent lesser than unity. Numerical 

simulations for this model depict a value for the characteristic parameter 𝛽0 according to literature. 
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