EFFECT OF Nb₂O₅ NETWORK STABILIZER ON ELASTIC AND OPTICAL PROPERTIES OF xNb₂O₅-(20-x)BaO-80TeO₂ TELLURITE GLASS SYSTEM

M. M. UMAIR, A.K. YAHYA^{*}

Faculty of Applied Sciences, UniversitiTeknologi MARA, 40450 Shah Alam, Malaysia

Telluro-niobatexNb₂O₅-(20-x)BaO-80TeO₂ glass system was prepared by melt-quenching method. Elastic, structure, and optical properties of the glass systems were measured using ultrasonic velocity measurement, Raman spectroscopy and UV-Vis spectroscopy, respectively. Results showed that the longitudinal velocity, v_L and shear velocity, v_s and independent moduli, C_L and μ steadily increased with Nb₂O₅. The related moduli such as bulk modulus, K_e and Young's modulus, Y and also Debye temperature, θ_D showed similar behavior to C_L and μ . The increase of elastic moduliis suggested to be due to the increase of bridging oxygen (BO) via TeO₄ tbp formation compared to non-brindging oxygen (NBO) which was confirmed by Raman spectroscopy and these results indicate the stabilizer effect of Nb₂O₅. Optical energy gap, E_{opt} was found to decrease with Nb₂O₅which is suggested to be due to smaller difference between HOMO and LUMO states of TeO₄ tbp compared to that of TeO₃ tp and the averaging effect of E_{opt} of constituent oxides. Meanwhile, Urbach energy, E_u decreased with Nb₂O₅ content indicating reduction in disorder of the glass structure.

(Received April 5, 2015; Accepted June 5, 2015)

Keywords: Tellurite glass;Elastic properties; Raman spectroscopy; Optical properties; Nb₂O₅

1. Introduction

Tellurite glasses have attracted much interest in the application of optical devices due to their high third-order nonlinear optical susceptibilities[1-4], high refractive index[5-8], high dielectric constant [9-11] and also good chemical durability[12]. These properties make the glass suitable material for optical applications such as laser materials and fiber optics. Also, tellurite glass shows low maximum phonon energy[13-16], low glass transition temperature[17,18], low crystallization ability [19]and is non-hygroscopic[20]. The unit structure for this glass, TeO₄ is unique where it consists of Te element positioned in trigonal bipyramids (tbp) with a lone pair in the equatorial position [21-23]. Another unit structure for this glass is TeO₃, which consists of Te element positioned in trigonal pyramids (tp) with two equatorial Te-O bond, one axial Te-O bonds and a lone pair. Uniquely, TeO₂ is a conditional network former as it cannot form glass on its own but needs a modifier such as alkali metal, alkaline earth metal, transition metal, or rare earth to form glass.

Addition of Nb₂O₅ in tellurite glass has been suggested to introduce some kind of stabilizer effect on glass network formation.For (80-x)TeO₂-20Nb₂O₅-*x*ZnO glass system, Nb₂O₅ was reported to enter the glass network as NbO₆ octahedral by connecting two neighbouring TeO₄ tbp[24].Nb₂O₅also plays a dual role in glass network modification, as network former or network modifier, depending on its concentration[25, 26]. The increase of Nb₂O₅ for TeO₂-Nb₂O₅-ZnO-NdO[27]and TeO₂-ZnO-Nb₂O₅-Er₂O₃[25] glass systems were reported to increase BO whilefor TeO₂-ZnO-Nb₂O₅ glass system [28],BO decreased for Nb₂O₅< 10 mol % but increased for Nb₂O₅-10 mol %. Particularly, for 76TeO₂-20Nb₂O₅-4BaO glass[24], besides Nb₂O₅, the presence of BaO

^{*}Corresponding author:ahmad191@salam.uitm.edu.my

288

was suggested to contribute to the increase in third order non linear susceptibility, χ^3 . BaO showed strong network modifier character as reported for TeO-TiO-BaO[21]and TeO-BaO[29, 30] glass systems. However, Nb₂O₅in the 76TeO₂-20Nb₂O₅-4BaO glass system[24]was fixed and therefore, the structural change in the glass systemdue to the presence of Nb₂O₅/BaO is not very clear. Thus, further investigation on BaO-Nb₂O₅-TeO₂ glass system is essential to elucidate glass structure modification due to Nb₂O₅.

On the other hand, ultrasonic study in conjunction with Raman and/or FTIR spectroscopy is one of the best tools to investigate the influence of glass network modification on rigidity, stiffness as well as elastic properties of the glass [26,27,28, 31-41]. Glass network modification was reported to show very close correlation to elastic behavior of glass. Increase of TeO₄ tbp formation was suggested to enhance elastic properties due to formation of bridging oxygen as shown for $xTiO_2$ -(50-x)V₂O₅-50TeO₂[38], xSm_2O_3 -(35-x)V₂O₅-65TeO₂[37] and xWO_3 -5ZrO-(95-x)TeO₂[7] tellurite glass systems. Meanwhile, the increase in TeO₃ tp formation which indicate increase in NBO of glass network weakens rigidity as shown by studies on xK_2O -(20-x)WO₃-60TeO₂[42], xNa_2O -(35-x)V₂O₅-65TeO₂[31] and xAg_2O -(50-x)V₂O₅-50TeO₂[43] glass systems. On the other hand, optical properties such as optical energy gap and refractive index can give good insight on structural and polarizability changes in glass[44-50]. It is known that Nb₂O₅ possess high polarizability due to the empty d shell [51] and is expected to give significant changes on optical properties. However, no elastic and optical studies on Nb₂O₅-BaO-TeO₂ glass system have been reported.

In this work, the effect of Nb₂O₅/BaO on elastic, structure and optical properties of xNb_2O_5 -(20-x)BaO-80TeO₂ glass system was investigated using ultrasonic velocity measurement, Raman and UV-Vis spectroscopy, respectively. All these three methods were analyzed and correlated to elucidate the changes in glass structure as a result of Nb₂O₅ addition.Also, further analysis on elastic properties using bulk compression and ring deformation models have been presented and discussed.

2. Experimental Detail

The xNb_2O_5 -20BaO-80TeO₂ glass samples with x=0,5,10 and 15 mol % were prepared using the conventional solid state method and melt-quenching technique. Powders of Nb₂O₅, BaO and TeO₂ with purity >99.95%-99.99% was mixed and ground in an agate mortar in an hour to reach good homogeneity and fined grained mixture. The mixed batches were then melted for an hour at 900°C and quenched onto stainless steel plate before annealed at 400°C for 4 hours. The glasses were then ground into powder to meet the requirement of X-ray diffraction (XRD), Raman and UV-Vis measurements.

XRD analysis was performed using X'Pert Pro Panalytical diffractometer to confirm the amorphous nature of the glass samples. The density, ρ of the glass samples were determined by Archimedes principle with xylene as an immersion medium using the relation below:

$$\rho = \left(\frac{W_a}{W_a - W_b}\right) \rho_b \tag{1}$$

where W_a is the glass sample weight in air, W_b is the glass sample weight in xylene and ρ_b is the density of xylene which is 0.861 g/cm³. Raman spectra of the glass samples were recorded using HORIBA JOBIN HR800 LabRam spectrometer at room temperature with the wavelength range 100-1200 cm⁻¹ and the excitation wavelength of 488nm (Ar⁺ laser). Optical absorption spectra were recorded using Varian Cany 5000 UV-VIS-NIR spectrometer with wavelength range between 200-1000 nm at room temperature.

The samples were polished using fine sand paper to obtain parallel opposite faces to meet the requirement for ultrasonic velocity measurement. Ultrasonic velocity measurements were measured in both longitudinal and shear modes at room temperature by applying the pulse-echo overlap technique at 5MHz using Matec model 7700 system. The related elastic moduli were calculated using the equations:

Longitudinal modulus,
$$C_L = v_L^2 \rho$$
 (2)

Shear modulus,
$$\mu = v_s^2 \rho$$
 (3)

Bulk modulus,
$$K_e = C_L - \left(\frac{4}{3}\right)\mu$$
 (4)

Young's modulus
$$Y = \frac{9K\mu}{3K+\mu}$$
(5)

Debye temperature,
$$\theta_D = \left(\frac{h}{k_B}\right) \left(\frac{3PN_A}{4\pi V_a}\right)^{1/3} v_m \tag{6}$$

Hardness,
$$H = \frac{(1-2\sigma)Y}{6(1+\sigma)}$$
(7)

Poisson's ratio,
$$\sigma = \frac{C_L - 2\mu}{2(C_L - \mu)}$$
(8)

where *h* is the Planck's constant, k_B is the Boltzmann's constant, N_A is the Avogadro number, V_a is the molar atomic volume calculated from the effective molecular mass and the density (M/ρ) , *P* is the number of atoms in the chemical formula and v_m is the mean sound velocity defined by the relation:

$$v_{m} = \left[\frac{3v_{L}^{3}v_{s}^{3}}{v_{L}^{3} + v_{s}^{3}}\right]^{\frac{1}{3}}$$
(9)

3. Results

XRD patterns for all thexNb₂O₅-(20-*x*)BaO-80TeO₂; *x*=0, 5,10,15 mol % glass samples (Fig. 1) were observed to have no sharp peaks which confirm the amorphous nature of the samples. Values of density, ρ , molar volume, V_a , longitudinal velocity, v_L , shear velocity, v_s , longitudinal modulus, C_L and shear modulus, μ for all samples are tabulated in Table 1. The density, ρ shows steady decrease from 5.61 g cm⁻¹ (*x*=0 mol %) to 5.25 g cm⁻¹ (*x*=15 mol %) with Nb₂O₅ content (Fig. 2) while molar volume, V_a of the glasses showed steady increase from 28.22 cm³ mol⁻¹ (*x*=0 mol %) to 33.37 cm³ mol⁻¹ (*x*=15 mol %) (Fig. 2).

Table 1. Values of density, ρ , molar volume, V_{α} longitudinal velocity, v_L , shear velocity, v_s , longitudinal modulus, C_L and shear modulus, μ of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

<i>x</i> (%)	$\rho (\text{g cm}^{-3})$	V_a (cm ³ /mol)	$v_L(\text{km s}^{-1})$	v_{s} (km s ⁻¹)	C_L (GPa)	μ (GPa)
	± 0.03	± 0.02	± 0.01	± 0.01	± 0.4	±0.2
0	5.61	28.22	3.19	1.34	57.2	10.0
5	5.45	30.09	3.36	1.42	61.4	11.0
10	5.29	32.06	3.53	1.54	65.9	12.6
15	5.25	33.37	3.69	1.61	71.7	13.7

Fig. 1. XRD patterns of xNb₂O₅-(20-x)BaO-80TeO₂ glass samples.

Fig. 2. Density (ρ) and molar volume (V_a) of xNb₂O₅-(20-x)BaO-80TeO₂ glass samples.

Fig. 3 shows Raman spectra of the xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples for x=0,5,10,15 mol%. Four obvious peaks were observed in the spectra which is at 450-470 cm⁻¹, 660-663 cm⁻¹, 743-763 cm⁻¹ and 879-883 cm⁻¹. As reported in previous structural studies on niobate tellurite glasses [25,27,28] the 450-470 cm⁻¹ peak was assigned to asymmetric stretching and bending vibration of Te-O in TeO₄ trigonal bipyramid (tbp) and in the present work, this peak was observed to increase in intensity, broadening and shifted to lower frequency with addition of Nb₂O₅. Meanwhile, the peak of 660-663 cm⁻¹ was assigned to symmetric vibration of Te-O in TeO₄tbp and this peak was also observed to increase in intensity with addition of Nb₂O₅ content. The 743-763 cm⁻¹ peak which was assigned to TeO₃ trigonal pyramid showed decrease in intensity as Nb₂O₅ content increased. On the other hand, 879-883 cm⁻¹ peak which refer to stretching vibration of Nb-O in NbO₆ octahedral [25,27,28,52] was observed in samples x=5-15 mol % only and this peak showed slight increase as Nb₂O₅ was increased.

Fig. 3. Raman spectra of xNb₂O₅-(20-x)BaO-80TeO₂ glass samples.

Fig. 4 shows the behavior of longitudinal velocity, v_L and shear velocity, v_s as Nb₂O₅ content increased. The addition of Nb₂O₅ caused gradual increase in v_L from 3.19 km s⁻¹(x= 0 mol %) to 3.69 km s⁻¹(x=30 mol %) and also in v_s from 1.34 km s⁻¹(x=0 mol %) to 2.61 km s⁻¹ (x=30 mol %). Meanwhile, longitudinal modulus, C_L and shear modulus, μ also show similar behavior with v_L and v_s (Fig. 5) with increases from 57.24 GPa (x=0 mol %) to 71.66 GPa (x=30 mol %) for C_L and form 10.04 GPa (x=0 mol %) to 13.67 GPa (x=30 mol %), for μ . Table 2 represent the values of bulk modulus, K_e , Young's modulus, Y, hardness, H, Poisson's ratio, σ , Debye temperature, θ_D and mean velocity, v_m . K_e steadily increase from 27.98 GPa to 37.79 (Fig. 6) as Nb₂O₅ content increased. On the other hand, hardness, H showed small increase with values between 0.71 GPa (x=0 mol %) and 4.99 GPa (x=15 mol %) (Fig. 7) while Poisson's ratio (σ) showed small decrease (Fig. 7) with the addition of Nb₂O₅. Fig. 8 showed the behavior of the Debye temperature, θ_D and mean velocity, v_m whereby both gradually increased with Nb₂O₅.

<i>x</i> (%)	$K_e(GPa)$	Y(GPa)	H(GPa)	σ	$\theta_D(^{\circ}C)$	$v_m (\text{km s}^{-1})$
	± 1.0	± 1.8	± 0.1	± 0.01	±0.6	±0.01
0	43.9	28.00	0.7	0.40	101.8	1.88
5	46.8	30.5	0.8	0.39	108.6	1.99
10	49.2	34.7	1.0	0.38	118.3	2.16
15	53.4	37.8	1.1	0.38	125.3	2.27

Table 2. Values of bulk modulus, K_e , Young's modulus, Y, hardness, H, Poisson's ratio, σ , Debye temperature, θ_D and mean velocity, v_m of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

Fig.4. Longitudinal velocity, v_L and shear velocity, v_s of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

Fig.5. Longitudinal modulus, C_L and shear modulus, μ of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

Fig.6. Bulk modulus, K_e and Young's modulus, Y of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

Fig. 7. Hardness, H and Poisson's ratio, σ of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

Fig.8. Debye temperature, θ_D and mean velocity, v_m of xNb₂O₅-(20-x)BaO-80TeO₂ glass samples.

A quantitative interpretation of the experimental elastic properties of the xNb_2O_5 -(20-x)BaO-80TeO₂ glass system can be further analyzed using the bulk compression model in conjunction with the ring deformation model. In the bulk compression model, it is assumed that the compression is isotropic in all directions with change in bond length without altering bond angle [23]. The theoretical bulk modulus, K_{bc} , was computed using the relation [53]:

$$K_{bc} = \frac{N_A}{9V_a} \sum \left(x n_f r^2 F \right)_n \tag{10}$$

where N_A is the Avogadro number, n_f is the cation coordination number, r is the bond length, F is the stretching force constant of oxide and n is the mole fraction of component oxide. For this glass system, K_{bc} decreased with the addition of Nb₂O₅ content from 89.84 GPa ($x=0 \mod \%$) to 78.20 GPa ($x=15 \mod \%$). Fig.9 shows the behavior of K_{bc}/K_e with respect to the Nb₂O₅ content and shows the K_{bc}/K_e steadily decrease from 2.05 ($x=0 \mod \%$) to 1.46 ($x=15 \mod \%$). On the other hand, the ring size, l is calculated using relation[53]: 294

$$l = \left[\frac{K_e}{0.0106F_a}\right]^{-\frac{1}{3.84}}$$
(11)

where K_e is the experimental bulk modulus and F_a is the average stretching force constant of glass which was calculated using equation [54]:

$$F_a = \frac{\sum (xn_i F)_n}{\sum (xn_i)_n} \tag{12}$$

The average ring size, *l* was observed to show a slight decrease(Fig. 9)between 0.467 nm ($x=0 \mod \%$) and 0.455 nm ($x=15 \mod \%$). The average ideal cross-link density, n_c was calculated using equation [53]:

$$n_c^- = \frac{1}{\eta} \sum_i (n_c N_c) \tag{13}$$

where n_c is the number of bridging bonds per cation minus two, N_c is the number of cations per glass formula unit and η is the total number of cations per glass formula unit. It was observed that the n_c steadily increased with addition Nb₂O₅ and the values lie between 2.40 ($x=0 \mod \%$) to 2.61 ($x=15 \mod \%$)(Table 4).

Table 3. Coordination number, n_{f} bond length, r, first order stretching force constant,F and of the oxides of TeO_2 , Nb_2O_5 and BaO.

Oxide	n_f	<i>r</i> (nm)	$F(\mathrm{N} \mathrm{m}^{-1})$
TeO ₂ (Saddeek 2005)	4	0.199	216
Nb ₂ O ₅ (Saddeek et al 2009)	6	0.170	346
BaO (Saddeek 2005)	6	0.194	232

Table 4. The values of theoretical bulk modulus, K_{bc} , ratio K_{bc} / K_e , average ring size, l and average cross-link density, n_c of xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

<i>x</i> (mol %)	K_{bc} (GPa)	K_{bc}/K_e	<i>l</i> (nm)	n _c
	± 0.04	± 0.03	± 0.01	
0	89.84	2.05	0.47	2.40
5	85.08	1.82	0.46	2.48
10	80.62	1.64	0.46	2.55
15	78.20	1.46	0.45	2.61

Fig.9 $K_{bc'}K_e$ ratio and average atomic ring size, $l of xNb_2O_5$ -(20-x)BaO-80TeO₂ glass samples.

Optical energy gap, E_{opt} of the xNb₂O₅-(20-x)BaO-80TeO₂ glass samples were determined using equation [55]:

$$\alpha(\omega) = \frac{A(\hbar\omega - E_{opt})^{p}}{\hbar\omega}$$
(14)

where α is the absorption coefficient near the fundamental absorption edge of each spectrum, E_{opt} is the optical band gap in eV, A is a constant and p is an index which can be assumed to be 1/2, 3/2,2 or 3, depending on the nature of the electronic transition responsible for absorption. For amorphous materials, p=2 as absorption by indirect transition is most applicable according to Tauc relations [55]. The value of E_{opt} can be obtained from the above equation by extrapolating the α to zero absorption in the $(\alpha hv)^{1/2}$ vs hv as shown plot in Fig. 10. The E_{opt} shows decrease from 2.93 eV (x=0 mol%) to 2.58 eV (x=15 mol%). (Fig. 11). On the other hand, in amorphous materials, band tailing exist in the forbidden energy band gap [51,55,56]. The band tailing which also known as Urbach energy can be determined using Urbach Rule [55]:

$$\alpha(\omega) = \alpha_o \exp\left[\frac{\hbar\omega}{E_u}\right] \tag{15}$$

where α_o is a constant and E_u is the width of the band tails of electron states in the forbidden band gap. The values of E_u were obtained from the reciprocal of the slope of the linear region of the curve (Urbach region) in the ln α vs hv plot. The E_u was observed to increase at initial addition of 5 mol % of Nb₂O₅ from 0.70 eV (*x*=0 mol %) to 0.79 eV (*x*= 5 mol %) followed by large decrease to 0.55 eV (*x*>5 mol%). (**Fig. 11**).

Table 5. Values of optical band gap, E_{opt} , Urbach energy, E_u and refractive index,

x (%)	$E_{opt} (\mathrm{eV})$	E_u (eV)	n
0	2.93	0.70	2.42
5	2.75	0.79	2.47
10	2.67	0.55	2.49
15	2.58	0.58	2.52

Fig. 10. $(\alpha hv)^{1/2}$ as a function of hv for xNb_2O_5 -(20-x)BaO-80TeO₂ glass samples.

Fig.11. Optical band energy, E_{opt} and Urbach energy, E_u of xNb₂O₅-(20-x)BaO-80TeO₂ glass samples.

The values of refractive index, *n* were calculated by using the following relation [55]:

$$\left(\frac{n^2 - 1}{n^2 + 2}\right) = 1 - \sqrt{\frac{E_{opt}}{20}}$$
(16)

Our calculation showed *n* increased with addition of Nb₂O₅ content from 2.42 ($x=0 \mod \%$) to 2.52 ($x=30 \mod \%$) (Table 5).

4. Discussion

Analysis on density is important in glass studies to identify structural compactness [25,33]. In the present work, the change in ρ has been analyzed using the well-known formula, $\rho=M/V_a$ where *M* is the molecular mass while V_a is the molar volume of the glass samples. The decrease in ρ (Fig. 2) indicates decrease in compactness of the glass[25] and this is due to the increase in molar volume, V_a as a result of replacement of smaller BaO (26.80 cm³/mol) by larger Nb₂O₅ (57.78 cm³/mol).

The change in longitudinal velocity, v_L and shear velocity, v_s due to addition of Nb₂O₅ indicates that the elastic properties of this glass system are sensitive to the composition of the glass. The behavior of v_L and v_s were analyzed based on equation (2) and (3) where the ultrasound velocities are dependent on the independent moduli, C_L and μ and density, ρ . In the present work, the increase in ultrasound velocities was due to both increase in independent moduli and decrease in ρ . However, the larger percentage change of independent moduli (ΔC_L =25.20 % and $\Delta \mu$ =36.21 %) in comparison was ρ which is 6.42 % gives insight of the dominant influence of both independent modulus on ultrasound velocities of the glass system.

On the other hand, the increase in intensity of asymmetric TeO₄ tbp (450-470 cm⁻¹) and symmetric TeO₄ tbp (660-663 cm⁻¹ peak) (Fig. 3) obviously indicates increase in bridging oxygen (BO) [25,28]. Meanwhile, the intensity of TeO₃ tp peak showed decrease with addition of Nb₂O₅ and this indicates decrease in formation of non-bridging oxygen (NBO) [25]. On the other hand, the small increase in NbO₆ peak (879-883 cm⁻¹) indicates some increase in formation of NBO. Nevertheless, the obvious increase in intensity of TeO₄ tbp (450-470 cm⁻¹ and 660-663 cm⁻¹ peaks) indicates progressive formation of BO in comparison to NBO.

Elastic properties are considered important for the selection of glasses for a particular application as it gives valuable information on stiffness and rigidity [28,31,32,34,35,41]. The gradual increase in C_L and μ (Fig. 5) indicates the increase in stiffness and rigidity of the glass system, respectively [34,57]. The increase is suggested to be due to the increase in BO formation which is attributed to Nb₂O₅ addition concurrent with the decrease of network modifier, BaO. The formation of BO as a result of Nb₂O₅ addition was also reported for xEr_2O_3 -15ZnO-(10-x)Nb₂O₅-75TeO₂[25], xPbO-(0.3-x)Nb₂O₅-0.7TeO₂[52] and xNd_2O_5 -15ZnO-(10-x)Nb₂O₅-75TeO₂[27] glass systems while formation of NBO as a result of BaO addition was reported for 80TeO₂-20ZnO-(x-20)BaO[58] and TeO₂-V₂O₅-BaO [59] glass systems. The increase in rigidity and stiffness together with BO formation indicates that Nb₂O₅ enters and stabilizes the glass network [24]. Also, the increasing rigidity with Nb₂O₅ addition may be due to the reduction of stronger modifying BaO in comparison to Nb₂O₅ modifier.

Bulk modulus, K_e is a measure of material's resistance to uniform compression [23]. The steady increase in K_e reflects the increase in rigidity and stiffness of this glass. Meanwhile, Young's modulus, Y which is defined as the ratio of linear stress to linear strain showed gradual increase with Nb₂O₅ (Fig. 6) indicating increase in stiffness of the glass [34, 57]. In addition, the behavior of Y was observed to show similar behavior to C_L and μ and this gives insight on the influence of the independent moduli on Y. Poisson's ratio, σ is an essential parameter to study elastic properties of solid materials. It is defined as a ratio between lateral and longitudinal strains produced when a tensile force is applied [36]. Ideally, the decrease in σ is followed by an increase in actual cross link densityand vice versa as reported for xTiO₂-(50-x)V₂O₅-50TeO₂ [38], xFe₂O₃-(20-x)ZnO-80TeO₂ [32] and xSm₂O₃-(35-x)V₂O₅-65TeO₂ [37] glass systems. Therefore, the decrease in σ (Fig. 7) indicates increase in actual cross link in the glass system. This suggests that the increase in elastic moduli may also be contributed by the increase in cross link which consequently increase the stiffness and rigidity of the glass.

Debye temperature, θ_D represents the temperature where all modes of vibration are excited [36] and it is an important parameter for a solid. θ_D also reflects strength of bonds [60], rigidity [28,31,33] and stiffness [34,57] for the glass material. θ_D was analyzed based on equation (7) where it is depends on number of atoms in the chemical composition, P, molar volume, V_a or mean velocity, v_m . In the present work, the increase in θ_D (Fig. 8) may be due to the increase in P and v_m . However, θ_D was found to show similar behavior to v_m (Fig. 8) and thus this suggests that θ_D is strongly influenced by v_m . The dominant influence of v_m in θ_D indicates the increase in θ_D reflects the glass's rigidity. Such indication was also reported for xZnO-45PbO-(55-x)V₂O₅[34], xWO₃-20PbO-(80-x)TeO₂ [33] and xFe₂O₃-(20-x)ZnO-80TeO₂ [32] glass systems.Previously, T. Hayakawa et al (2010) reported that the χ^3 increased as TeO₄ tbp increased in their studied glass system. The reportwas also supported by ab initio molecular orbital calculation result which showed higher polarizability of TeO₄ tbp compared to TeO₃ tp[26,61]. Thus our Raman analysis and elastic moduli results suggest some kind of correlation between rigidity and χ^3 for the glass system.

298

Analysis using the bulk compression model shows that the values of K_e were always smaller compared to K_{bc} indicating the energy required for the compression was less compared to ideal isotropic compression [23]. However, the decrease in K_{bc}/K_e ratio with addition of Nb₂O₅ (Fig. 9) indicates increase in ideal isotropic compression at the expense of ring deformation[42,60]. As described by Afifi and Gaafar (2004), the value of $K_{bc}/K_e=1$ indicates compression occur via ideal compression while $K_{bc}/K_e = 3-10$ indicates bond bending process is involved during compression. In this present work, K_{bc}/K_e value is close to 2 which indicate the main compression mechanism remains ideal compression. In addition, the behavior of K_{bc}/K_e follow suit with average ring size, l (Fig. 9) indicating decrease in ring deformation with Nb₂O₅ addition. Similar observations were reported for $xK_2O-(20-x)WO_3-80TeO_2$ (Sidkey and Gaafar 2004), $xNa_2O-(35-x)V_2O_5-65TeO_2$ [31] and $xSm_2O_3-(35-x)V_2O_5-65TeO_2$ [37].

Generally, a decrease in E_{opt} can be due to increase in NBO where electrons were held less tight compared to BO[51,55]. Intriguingly, in the present study, the decrease in E_{opt} was accompanied by the increase of BO. Nevertheless, the decrease in E_{opt} due to increase in TeO₄ have been suggested for $xFe_2O_3-(100-x)[4TeO_2-PbO_2[62], 68TeO_2-5Nb_2O_5-20ZnO-7PbO[63],$ 70TeO-10Nb₂O₅-20PbO [52] and 50(6TeO₂-4V₂O₅)-50PbO [17] glass systems where ab-initio molecular orbital calculation shows that the difference between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) state of TeO₄ tbp is small compared to that of TeO₃ tp. Therefore, the decrease in E_{opt} in the present glass system is suggested to be due to the increase in TeO₄ tbp. Also, G. Upenderet. al. (2010) suggested that the decrease in E_{opt} may not be related to structural change but contributed by the E_{opt} of constituent oxides. If constituent oxides is considered to affect E_{opt} of the presently studied glass system, the replacement of Nb₂O₅(E_{opt} =3.30 eV)[52] with BaO (E_{opt} =3.45 eV)[64] contributes to the decrease in E_{opt} of the glass system. On the other hand, amorphous materials possess band tail energy due to their disordered structure [51,55,56]. This band tail, also known as the Urbach energy, E_u is determined using the Urbach rule and its increase indicates increase in degree of disorder of the amorphous structure [51,55,56]. In the present work, the decrease in E_{μ} (Table 5) indicates reduction of defects in this glass system as Nb_2O_5 increased. Generally, refractive index of tellurite glass shows increase with increase in NBO formation. However in the present study, n showed increase with increase in BO formation as discussed earlier in our Raman analysis. Interestingly, several reports for TIO-TeO₂[66]and 68TeO₂-5Nb₂O₅-20ZnO-7PbO [64] glass systems suggest that the increase in n was due to increase in TeO₄ tbp which possesses about 20% higher mean polarizability compared to that of TeO_3 tp as computed by ab initio molecular orbital calculation. Thus the increase in n for xNb_2O_5 -(20-x)BaO-60TeO₂ glass system may be to be due to the increase in TeO₄ tbp which has higher mean polarizability in comparison to TeO_3 tp.

5. Conclusion

Elastic, structural and optical properties of the xNb_2O_5 -(20-x)BaO-60TeO₂ glass system have been investigated. Addition of Nb₂O₅ at the expense of BaO caused increase in ultrasound velocities and elastic properties indicating increase in rigidity and stiffness of the glass system. Raman analysis showed predominant formation of BO via TeO₄tbp group. The results suggest Nb₂O₅ enters and stabilizes the glass network. On the other hand, K_{bc}/K_e ratio decreased with Nb₂O₅ indicating reduction of ring deformation upon compression due to reduction in average ring size. The decrease in optical band gap, E_{opt} is suggested to be due to the smaller difference between HUMO and LUMO states of TeO₄ tbp compared to that of TeO₃ tp and to the averaging effect of E_{opt} of constituent oxides. Addition of Nb₂O₅ also caused refractive index to increase and Urbach energy to decrease.

Acknowledgement

A.K. Yahya would like to acknowledge research grant from Ministry of Education (MOE), grant no. 600-RMI/RACE 16/6/2(1/2013).

References

- [1] T. Xu, F. Chen, S. Dai, X. Shen, X. Wang, Q. Nie, C. Liu, K. Xu, J. Heo. J. Non-Cryst. Solids, **357**, 2219 (2011).
- [2] F. Chen, T. Xu, S. Dai, Q. Nie, X. Shen, J. Zhang, X. Wang, Optical Materials **32**, 868(2010).
- [3]E. Yousef, M. Hotzel, C. Russel. J. Non-Cryst. Solids, 353, 333 (2007).
- [4]N. Ghribi, M. Dutreilh-Colas, J.R. Duclère, T. Hayakawa, J. Carreaud, R. Karray,
- A. Kabadou, P. Thomas.J. Alloy. Compd. 622, 333 (2015).
- [5]E. S. Yousef and B. Al-Qaisi.Solid State Sciences, 19, 6 (2013).
- [6]R. El-Mallawany, M. Dirar-Abdalla, I. A. Ahmed.Mater.Chem. Phys. 109, 291 (2008).
- [7]El Sayed Yousef, Amin El-Adawy, N. El Koshkhany, E. R. Shaaban. J. Phys. and Chem. Solids, **67**, 1649(2006).
- [8]N, Elkhoshkhany, RafikAbbas, R. El-Mallawany, A. J. Fraih. Ceramics International, **40**, 14477(2014).
- [9]Mohamad M. Ahmad., El Sayed Yousef, El Sayed Moustafa. Physica B, **371**, 74(2006)
- [10]D. Dutta, M. P. F. Graca, M. A. Valente, S. K. Mendiratta. Solid State Ionics. 230,66(2013)
- [11]M. Prashant Kumar, T. Sankarappa, B. Vijaya Kumar, N. Nagaraja. Solid State Sciences, **11**, 214 (2009)
- [12]A. Belwalkar, H. Xiao, W. Z. Misiolek, J. Toulouse. J. Mater. Process. Technol. **210**, 2016 (2010).
- [13] Vineet Kumar Rai, KaushalKumar, S B Rai. Optical Materials. 29, 873 (2007).
- [14]ShiqingXu, HongtaoSun, ShixunDai, JunjieZhang,ZhonghongJiang. Solid State Communications,**133**, 89 (2005).
- [15]XunsiWang, LirenLiu, QiuhuaNie, TiefengXu, Xiang Shen, ShixunDai and Xianghua Zhang SpectrochimicaActa Part A,67, 1025 (2007).
- [16]C. Zhao, G.F. Yang, Q.Y. Zhang, Z.H.J. Jiang. J. Alloy. Compd, 461, 617 (2008)
- [17]S. Rada, M. Neumann, E. Culea. Solid State Ionics, **181**, 1164 (2010)
- [18]A. Abd. El-Moneim. Mater. Chem. Phys. 73, 318 (2002)
- [19]N.V. Ovcharenko, T. V. Smirnova.J. Non-Cryst. Solids.291, 121 (2001)
- [20]R. El-Mallawany. Mater. Chem. Phys. 53, 93 (1998)
- [21]J.C. Sabadel, P. Armand, D. Cachau-Herreillat, P. Baldeck, O. Doclot, A. Ibanez,
- E. Philippot. J. Solid State Chem., **132**, 411 (1997)
- [22]U. Hoppe, E. Yousef, C. Russel, J. Neuefeind, A.C. Hannon. Solid State Communications, **123**, 273 (2002).
- [23]R. El-Mallawany, Tellurite Glasses Handbook, Physical Properties and Data, CRC Press LLC, FL, USA, (2002)
- [24]TomokatsuHayakawa, Masahiko Hayakawa, Masayuki Nogami,Philippe Thomas. Optical Materials,**32**, 448 (2010)
- [25]N. Baizura, A.K. Yahya.J Non-Cryst.Solids., 357, 2810 (2011)
- [26]U. Hoppe, E. Yousef, C. Russel, J. Neuefeind, A.C. Hannon. J. Phys Condens. Matter, **16**, 1645 (2004)
- [27]V. Kamalaker, G. Upender, Ch. Ramesh and V. Chandra.SpectrochimicaActa Part A, **89**, 149 (2002)
- [28]N.B. Mohamed, A.K. Yahya, M.S.M. Deni, S.N. Mohamed, M.K. Halimahand H.A.A. Sidek. J. Non-Cryst Solids, **356**, 1626 (2010)
- [29]Takao Sekiya, Norio Mochida, Atsushi Ohtsuka. J. Non-Cryst. Solids, 168, 106 (1994)
- [30]A. NisharaBegum, V.Rajendran. Mater. Lett., 61, 2143 (2007).
- [31] M.M. Umair, A.K. Yahya. Mater. Chem. Phys., 142, 549 (2013).
- [32] S. Azianty, A.K. Yahya, M.K. Halimah. J. Non-Cryst. Solids, 358, 1562 (2012).
- [33] S.Azianty, A.K. Yahya. J. Non-Cryst. Solids, 378, 234 (2013).
- [34]S.Laila, S.N.Supardan, A.K. Yahya. J Non-Crystal. Solids367, 14(2013).
- [35] S. Laila, A.K. Suraya, A.K. Yahya. ChalcogenideLatters, 11,91 (2014).
- [36]M.A.Sidkey, R.E1-Mallawany, R.I Nakhla, A. AbdE1-Moneim. J. Non-Cryst. Solids **215**,75(1997).

- [37] M.A Sidkey, A .AbdEl-Moneim, L. AbdEl-Latif.Mater. Chem. Phys. 61,103 (1999)
- [38] R. El-Mallawany, N. El-Khoshkhany, H. Afifi. Mater. Chem. Phys., 95, 321 (2006).
- [39] Yasser B. Saddeek.Mater.Chem. Phys.,91, 146 (2005).
- [40] DariushSouri.Measurement,44, 1904 (2011).
- [41] I.Z. Sapian, M.I.M. Yusof, A.K. Yahya.Chalcogenide Letters, 11, 491 (2014).
- [42] M.A. Sidkey, M.S.Gaafar.Physica B,348, 46 (2004).
- [43] R. El-Mallawany, A. Abousehly, E. Yousef.J. Mater. Science Lett., 19,409 (2000).
- [44]G. Upender, Ch. Sameera Devi, V.Chandra Mouli. Mater. Res. Bull., 47, 3764 (2012).
- [45]G. Vijaya Prakash, D. Narayana Rao and A.K. Bhatnagar. Solid State Communications. **119**, 39 (2001).
- [46]J.C.S. Moraes, J.A. Nardi, S.M. Sidel, B.G. Mantovani, K. Yukimitu, V.C.S. Reynoso,
- L.F. Malmonge, N. Ghofraniha, G. Ruocco, L.H.C. Andrade, S.M. Lima. J. Non-Cryst. Solids, **356**, 2146 (2010).
- [47]A.H. Khafagy, A.A. El-Adawy, A.A. Higazy, S. El-Rabaie, A.S. Eid. J. Non-Cryst. Solids, **354**, 3152 (2008).
- [48]Zahra Ashur Said Mahraz, M. R. Sahar and S.K. Ghoshal. J. Molecular Structure, **1072**, 238 (2014).
- [49]R. S. Kundu, Sunil Dhankhar, R. Punia, Kirti Nanda, N. Kishore. J. Alloy. Compd. **587**, 66, (2014).
- [50]H. Desirena, A. Schülzgen, S. Sabet, G. Ramos-Ortiz, E. de la Rosa, N. Peyghambarian. Optical Mater.,**31**, 784 (2009).
- [51]Yanling Wang, Shixun Dai, Feifei Chen, Tiefeng Xu, Qiuhua Nie, Mater. Chem. Phys., **113**, 407 (2009).
- [52] Jitka Ozdanova, Helena Ticha, Ladislav Tichy. Optical Mater., 32, 950 (2010).
- [53]B. Bridge, N.D. Patel, D.N. Waters. Phys. State Solids, 177, 655 (1983).
- [54]A.A. Higazy, B. Bridge.Phys. Chem. Glasses, 17, 1 (1986).
- [55]G. Upender, S. Ramesh, M. Prasad, V.G. Sathe, V.C. Mouli.J. Alloy. Compd., **504**, 468 (2010).
- [56]TomoharuHasegawa. J. Non-Cryst. Solids, 357, 2857 (2011).
- [57]M.M. Umair, A.K. Yahya, M.K. Halimah, H.A.A. Sidek. J. Mater. Sci. Technol. **31**, 83 (2015).
- [58]N Manikandan, AleksandrRyasnyanskiy, Jean Toulouse. J. Non-Cryst. Solids, **358**, 947 (2012).
- [59]SungpingSzu,Fu-ShyangChang. Solid State Ionics, 176, 2695 (2005).
- [60]H. Afifi, S. Marzouk. Mater. Chem. Phys., 80, 517 (2003).

[61]Jian Lin, Wenhai Huang, Zhengrong Sun, Chandra S. Ray, Delbert E. Day. J. Non-Cryst. Solids, **336**, 189 (2004).

- [62]Simona Rada, Adriana Dehelean, Eugen Culea. J. Mol Model., 17, 2103 (2011).
- [63]El Sayed Yousef, A.E. Al-Salami, Mario Hotzel. Bull. Mater. Sci., 35,961(2012).
- [64]F.I.Ezema, P.E Ugwuoke. Pacific J. Sci. Technol.,5, 33(2004).
- [65]B.Jeansannetas, S.Blanchandin, P.Thomas, P. Marchet, J.C. Champarnaud-Mesjard,
- T.Merle-MeHjean, B. Frit. J. Solid State Chem. 146,329 (1999).