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THE MERRIFIELD-SIMMONS INDEX OF AN INFINITE CLASS OF
DENDRIMERS

M. B. AHMADI", M. SEIF
Department of Mathematics, College of Sciences, Shiraz University

A dendrimer is a tree-like highly branched polymer molecule. Dendrimers are synthesized
from monomers with new branches added in discrete steps to form a tree-like architecture.
They have some proven applications, and numerous potential applications. The Merrifield-
Simmons index of a graph is defined as the total number of the independent sets of the
graph. In this paper, we give a relation for computing Merrifield-Simmons index of an
infinite family of dendrimers.
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1. Introduction

Dendrimers are nanostructures that can be precisely designed and manufactured for a wide
variety of applications. Dendrimers are the first large, man-made molecules with precise, nano-
sized composition and well-defined three-dimensional shapes. The first dendrimers were
synthesized divergently by Vogtle in 1978 [1]. Dendrimers then experienced an explosion of
scientific interest because of their unique molecular architecture.

Let G = (V,E) be asimple molecular graph (i.e. an undirected graph containing no graph
loops or multiple edges) whose vertex and edge-shapes are represented by V(G) and E(G),
respectively. The elements of E are 2-element subset of V . Two vertices of G are said to be
independent if there are not any edges between them. For anyveV(G),
NG(V)Z{UllJVE E(G)} denotes the neighbors of v. LetW <V (G), G—-W denotes the

subgraph of G obtained by deleting the vertices of W and the edges incident with them.

A topological index is a real number related to a molecular graph. It must be a structural
invariant, i.e. it does not depend on the labeling or the pictorial representation of a graph. The
Merrifield-Simmons index [2- 4] is one of the topological indices whose mathematical properties
were studied in some detail [5- 9]. In [3] it was shown that this index is correlated with the boiling
points.

Let G(V,E) be a simple graph on n vertices. A k -independent set of G is a set of k
mutually independent vertices. Denote by 1(G, k) the number of the k -independent sets of G . By
definition, the empty vertex set is an independent set. Then i(G,0) =1 for any graph G . The
Merrifield-Simmons index of G , denoted by 1(G), is defined as

i(G)=Zn:i(G,k).

So i(G) is equal to the total number of the independent sets of G .
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In this paper we investigate the Merrifield-Simmons index for an infinite family of
dendrimers.
Structure of denrimer, D[], which is used in this study is as depicted in figure 1. Here n

is the step of growth in the type of dendrimer.
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Fig. 1. Structures of the dendrimer used in this study

2. Main results and discussion

We give two important lemmas from [3, 10] which are helpful to the proofs of our main
results.

Lemma 1. Let G be a graph with k componentsG,,G,,...,G, , then

k

1(G) =Hi(Gj) :

j=1

Lemma 2. For any graph G with anyv eV (G) , we have
i(G) =i(G-v)+i(G-[v],
where [v]=Ng (V) Uv.
Define T, as the binary tree whose step of growth is equal to n [figure 2]. First, we try to
find a recursive relation for computing i(T,) .
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Figure 2.

Theorem 1: The Merrifield-Simmons index of T, , is computed as follows:

I(Tn) = (i(—l—n—l))2 + (i(Tn—Z))4 for n= 21
where i(T,) =2 andi(T,) =5.
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Proof: Forn=0 andn =1, it’s easy to realize that i(T,) =2 andi(T,)=5. Forn > 2,

assumes that 0 is the first node of T, and a and b are vertices which are adjacent with 0 [see
figure 2]. From lemmal, we have:

i(T,) =i(T, —0)+i(T, ~[o]). (1)
The graph T, —0 consists of two subgraphs T,_,. From lemma 2 we can say that:
i(Tn - 0) = (i(Tn—l))Z' (2)
The graph T, — [0] has four components that each of them is T, _,. So we have
i, —[o) = (i(T,,)*. ®)
Finally, from (1), (2) and (3) we obtain:
I(Tn) = (i(-l-n—l))2 + (i(Tn72 ))4 (4)

Theorem 2: The Merrifield-Simmons index of D[n] is computed as follows:

D[n] = {(i(Tn_l))4 +(i(T,,)" n>2
17 n=1

Proof: It’s easy to find out thati(D[1]) =17 . For n>2 assumes that 0 is the center
vertex of D[n] with which the vertices ¢,d,e and f are adjacent. From lemma 1, we have:

i(D[n]) =i(D[n] - 0) +i(D[n]-[o}), )

where [0] =N(G,)Uo= {0, c,d,e, f } D[n]—o is a graph with 4 components that each
of them is similar to T, ,. The graph D[n] - [0] consists of 8 subgraphs that each of them is
similar to T, _,. So, by lemma 2 we have:

i(DIN]-0) = (i(T, )" (6)

and
i(D[n] - [o]) = (i(T,.,))". )
Finally, from (5), (6) and (7) we conclude that:

i(D[n]) = (I(T,.)* +((T,))". ®)

The proof is now complete.

Using theorem 1 and 2, In table 1, the values of the Merrifield-Simmons index of D[n]
for2 < n <8 are computed.
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Table 1. Computing the Merrifield-Simmons index of D[n] for2 <n <8.

Dendrimer Merrifield-Simmons index

D[2] 881

D[3] 3216386

D[4] 3.6262x10%

D[5] 5.1973x10%

D[6] 9.9400x10%

D[7] 3.8129x 102

D[8] 5.4478x10%%
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