
Digest Journal of Nanomaterials and Biostructures                                Vol. 5, No 2, April 2010, p. 335 – 338 
 
 

 
 

THE MERRIFIELD-SIMMONS INDEX OF AN INFINITE CLASS OF 
DENDRIMERS 

 
 

M. B. AHMADI∗, M. SEIF 
Department of Mathematics, College of Sciences, Shiraz University 
 
 
A dendrimer is a tree-like highly branched polymer molecule. Dendrimers are synthesized 
from monomers with new branches added in discrete steps to form a tree-like architecture. 
They have some proven applications, and numerous potential applications. The Merrifield-
Simmons index of a graph is defined as the total number of the independent sets of the 
graph. In this paper, we give a relation for computing Merrifield-Simmons index of an 
infinite family of dendrimers. 
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1. Introduction 
 
Dendrimers are nanostructures that can be precisely designed and manufactured for a wide 

variety of applications. Dendrimers are the first large, man-made molecules with precise, nano-
sized composition and well-defined three-dimensional shapes. The first dendrimers were 
synthesized divergently by Vögtle in 1978 [1]. Dendrimers then experienced an explosion of 
scientific interest because of their unique molecular architecture. 

Let  be a simple molecular graph (i.e. an undirected graph containing no graph 
loops or multiple edges) whose vertex and edge-shapes are represented by  and , 
respectively. The elements of 
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E  are 2-element subset of V . Two vertices of  are said to be 
independent if there are not any edges between them. For any , 

 denotes the neighbors of v . Let ,  denotes the 
subgraph of G  obtained by deleting the vertices of W  and the edges incident with them. 
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A topological index is a real number related to a molecular graph. It must be a structural 
invariant, i.e. it does not depend on the labeling or the pictorial representation of a graph. The 
Merrifield-Simmons index [2- 4] is one of the topological indices whose mathematical properties 
were studied in some detail [5- 9]. In [3] it was shown that this index is correlated with the boiling 
points.  

Let  be a simple graph on n vertices. A -independent set of  is a set of k  
mutually independent vertices. Denote by  the number of the -independent sets of G . By 
definition, the empty vertex set is an independent set. Then 
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Merrifield-Simmons index of , denoted by , is defined as  
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So  is equal to the total number of the independent sets of G . )(Gi

                                                 
∗Corresponding author: mbahmadi.shirazu.ac.ir 
 



336 
 

 In this paper we investigate the Merrifield-Simmons index for an infinite family of 
dendrimers. 

Structure of denrimer, , which is used in this study is as depicted in figure 1. Here n  
is the step of growth in the type of dendrimer. 

][nD

 
 

 
 

 

 

 

 
 D[1]       D[2]           D[3] 

 
Fig. 1. Structures of the dendrimer used in this study 

 
 
2. Main results and discussion  
 
We give two important lemmas from [3, 10] which are helpful to the proofs of our main 

results. 
Lemma 1. Let G  be a graph with  components , then [ ]3  k kGGG ,,, 21 K
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Lemma 2.  For any graph G  with any[ ]10 )(GVv∈ , we have 
[ ])()()( vGivGiGi −+−= , 

where . [ ] vvNv G U)(=
Define T  as the binary tree whose step of growth is equal to  [figure 2]. First, we try to 

find a recursive relation for computing i . 
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Figure 2. 
 
 
Theorem 1: The Merrifield-Simmons index of T , is computed as follows: n
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Proof: For 0=n  and , it’s easy to realize that 1=n 2)( 0 =Ti  and . For , 
assumes that  is the first node of  and  a  and are vertices which are adjacent with o [see 
figure 2]. From lemma1, we have: 

5)( 1 =Ti 2≥n
o nT b

                                   [ ])()()( oTioTiTi nnn −+−= .                                             (1) 
 

The graph oTn −  consists of two subgraphs . From lemma 2 we can say that: 1−nT
                                                                                             (2) .))(()( 2

1−=− nn TioTi
The graph [ ]oTn −  has four components that each of them is . So we have 2−nT

                                        [ ] .))(()( 4
2−=− nn TioTi                                                    (3) 

Finally, from (1), (2) and (3) we obtain: 
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Theorem 2: The Merrifield-Simmons index of  is computed as follows: ][nD
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Proof: It’s easy to find out that 17])1[( =Di

ed ,, f
. For  assumes that  is the center 

vertex of  with which the vertices  and are adjacent. From lemma 1, we have: 
2≥n o
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where . [ ] { }fedcooGNo o ,,,,)( == U onD −][  is a graph with 4 components that each 
of them is similar to . The graph 1−nT [ ]onD −][

2−nT
 consists of 8 subgraphs that each of them is 

similar to . So, by lemma 2 we have:                                   
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Finally, from (5), (6) and (7) we conclude that: 
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The proof is now complete. 

Using theorem 1 and 2, In table 1, the values of the Merrifield-Simmons index of  
for  are computed.   
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Table 1. Computing the Merrifield-Simmons index of  for . ][nD 82 ≤≤ n
 

Dendrimer Merrifield-Simmons index 
]2[D  881 
]3[D  3216386 
]4[D  3.6262  1310×
]5[D  5.1973  2710×
]6[D  9.9400  5510×
]7[D  3.8129  11210×
]8[D  5.4478  22510×
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