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The paper presents study of hydroxyapatites from different sources - obtained by the 
authors:  a) Nat.HA, derived from animal bones, b) synthetic made by a wet method, - in 
comparison with commercial powders; Habiocer®, and Merck®). All hydroxyapatites 
were characterized using X-ray diffraction (XRD); Fourier transformed infrared 
spectroscopy (FT-IR) and scanning electron microscopy (SEM-EDS) methods. Calcium 
was determined by titration with EDTA (ethylenediaminetetraacetic acid) in the presence 
of thymolphthalein and calcein mixture whereas phosphorus was determined with the 
spectrophotometric method. Content of microelements was determined by the AAS and 
ICP method. The specific surface of the materials was measured by BET method. Volume 
of micro and mesopores was also determined. Synthetic hydroxyapatite, prepared by the 
authors by wet method was of low crystallinity, high surface area and porosity, while XRD 
and FT-IR characteristics were similar to commercial Merck®. In contrast, the highest 
crystallinity, while the lowest surface area and porosity caused possibly by sintering of the 
material characterised Nat.HA (animal bone calcined at 800oC). XRD and FT-IR 
characteristics of commercial Habiocer® indicated high, (similar to Nat.HA) crystallinity, 
however, surface area and pores were much higher than those of Nat.HA.   
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1. Introduction 
 
Bone is a living connective tissue that provides structural support to body organs and is an 

emergency reservoir of calcium in case that the concentration of that element in blood needs to be 
corrected because of disease, or some pathological processes throughout life [1].  

The main components of bone are: organic (mostly collagen fibres) and inorganic mineral 
phase, known as biological hydroxyapatite which represents 65-70 wt% of natural bone [2-5]. 
Collagen fibres are responsible for bone resilience, while mineral component for bone stiffness. 
The most compatible with bone mineral phase is non-stoichiometric calcium phosphate of “apatitic 
structure” [2]. It differs from stoichiometric hydroxyapatite of formula Ca10(PO4)6(OH)2 with 
molar ratio of Ca/P = 1.67. Biological apatites - constituents of bone, enamel, dentine and 
pathologically calcified tissues are nonstoichiometric, mostly Ca-deficient with respect to 
phosphate (Ca/P < 1.67) unless carbonate ion is incorporated, then Ca/P is higher than 1.67. The 
difference between stoichiometric hydroxyapatite and bone mineral lies also in the impurity 
content, which is associated mostly with ions substitution for calcium sites in the bone 
hydroxyapatite structure. 
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For the last few decades much attention has been given to develop new biologically 
relevant materials useful for skeletal tissue reconstruction on surgically operated patients. Most of 
them are based on synthetic hydroxyapatite (HAp) [2-7]. Such materials are  biocompatible, 
bioactive, osteoconductive, non-toxic, noninflammatory and have an ability to form strong bonds 
with the living hard tissue. The chemical and crystallographic similarity to biological apatites 
makes synthetic materials intimately integrating with the surrounding host bone by a strong 
interface [8].  

Synthetic bioceramics for skeletal tissue reconstruction are already commercially available 
in a large assortment. The aim of the present paper was to demonstrate similarities and differences 
in physicochemical characteristics of selected commercial materials under the name of 
hydroxyapatite (Habiocer®, Merck®) in comparison to prepared by the authors: synthetic HA 
(precipitated from a water solution) and  Nat.HA (calcined animal bone).  

 
2. Experimental 
 
2.1 Materials 
 
2.1.1 Prepared by the authors 
a) Preparation method of hydroxyapatite from natural animal bone has been 

developed in the Institute of Inorganic Chemistry and Technology, Cracow University of 
Technology [9]. As a raw material deproteinised and defatted bone pulp - (bone sludge delivered 
from a slaughterhouse) was applied. Two stage calcining process in chamber oven with electric 
heating in air atmosphere at temperatures 600oC and 850oC, respectively for each stage for 3 hours 
produced hydroxyapatite of natural origin (Nat.HA). Sieve fraction below 0.063 mm was used in 
all tests. 

b) Preparation of synthetic hydroxyapatite was realized by wet method [10]. Starting 
solutions were prepared from reagent grade H3PO4 (Solution A) and Ca(OH)2 (Solution B). pH at a 
level of 12 was adjusted with the help of NH3·H2O. Concentration in solution (A) was 0.300 
mol/dm3. Concentration in solution (B) was 0.500 mol/dm3. Solution (A) = 100 cm3, was added 
dropwise into 100 cm3 of solution (B). Molar ratio of Ca/P was ~1.67. The slurry obtained was 
stirred for 60 minutes at room temperature, then left to maturate for the next 24 hours, after that 
the precipitate was filtered off. The filter cake was washed with distilled water, covered with filter 
paper and left to dry at room temperature. 

Commercial materials 
Two commercially available synthetic hydroxyapatites: Habiocer® (Chema-Elektromet, 

Poland) and Merck® were used for comparative study.  
 
2.2 Methods 
Phosphorus content was determined by spectrophotometric method according to [11] with 

Marcel Media UV-VIS spectrophotometer after former mineralization of the sample in mixture of 
concentrated hydrochloric and nitric acids. Calcium was determined by titration method according 
to [12] in the presence of calcein and thymolphthalein as indicators. 

Phase composition was analysed using X-Ray diffraction (XRD) method with the use of 
Philips X’Pert diffractometer with graphite monochromator, Cu Kα, (λ = 0.1518nm), and Ni filter. 
Contents of microelements: Cu, Co, Ni, Cr and Cd were determined by AAS method with Analyst 
300 Perkin Elmer Spectrometer. Contents of heavy metals such as Pb, Hg and As were measured 
by the ICP (inductively coupled plasma).  

Infrared investigations FT-IR were realized with spectrophotometer Scimitar Series FTS 
2000 Digilab in range of middle infrared 400-4000 cm-1. 0.0007 g sample was pressed in 0.2000 g 
of KBr. Number of scans 16 and resolution 4 cm-1 characterized these measurements.  

The microstructure of samples was examined using scanning electron microscope S-4700 
Hitachi supported by chemical analysis carried out using energy dispersive X-ray spectroscope 
(EDS) at 20.0 kV and 15.0 mA. 

Specific surface of powders was evaluated by BET method using apparatus ASAP 2405 
Micromeritics Inc. USA. Surface and volume of pores were also tested. 
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Fig. 3. SEM pictures of hydroxyapatite purchased from Merck® 
 

 
 

Fig. 4. SEM pictures of hydroxyapatite natural origin (Nat.HA) 
 

Figures 3 and 4 are showing representative SEM pictures of commercial product 
(Merck®) and hydroxyapatite obtained through animal bone calcining (Nat.HA), respectively. The 
hydroxyapatite powders demonstrated diversified propensity to agglomeration. The highest 
propensity to agglomeration showed HA from Merck®. Hydroxyapatite from Merck® is in the 
form of large clusters of different size with sharp edges. Nat.HA exhibited sintered grains of 
regular sphere-like shape with diameter approximately 1μm.  

The specific surfaces of obtained powders were characterized by BET method. Surface 
and volume of pores were also investigated. Results are presented in Table 2.  
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Table 2. Characteristics of surface area and pores of the analysed hydroxyapatites. 
 

Parametr Unit Synthetic 
hydroxyapatite 

Habiocer® 

Nat.HA Synthetic 
by wet 
method 

Synthetic 
hydroxyapatite 

Merck® 
 

BET surface 
area 

[m2/g] 26.74 4.10 77.62 56.47 

Langmuir 
surface area 

[m2/g] 34.19 5.26 98.61 71.90 

Cumulative 
adsorption 

surface area of 
mezopores 

[m2/g] 28.91 4.69 80.67 62.02 

Micropore area [m2/g] 0.88 0.30 11.58 8.17 
Cumulative 

adsorption pore 
volume of 
mezopores 

[cm3/g] 0.21 0.00755 0.61 0.26 

Micropore 
volume 

[cm3/g] 0.00039 0.000135 0.00504 0.00359 

Average pore 
diameter 

[nm] 12.93 73.67 251.63 153.30 
 

 
Hydroxyapatite synthesized by the wet method is characterised by the highest, while 

Nat.HA by the lowest values of parameters indicated in Table 2 such as respectively:  BET surface 
(77.62 and 4.10), surface of mezopores (80.67 and 4.69), micropore area (11.58 and 0.30).  It is 
worth to emphasise that there is some similarity between relatively high listed above 
characteristics of commercial Merck® and synthetic obtained by the authors by wet method 
hydroxyapatite.  Micropore area for natural and synthetic Habiocer® was below 1 m2/g.  
Micropore volume was below 0.005 cm3/g for all tested samples. The average pore diameter was 
high for synthetic HA by wet method (251.63nm) and for Merck® (153.3nm) whereas for 
Habiocer® and Nat.HA the respective pore diameters were much smaller (12.93 and 73.67) in nm. 

 
3. Conclusions 
Comparative study of four different types of hydroxyapatite revealed that physicochemical 

properties and morphology of the powders depended on the origin/preparation method.  
Synthetic hydroxyapatite, prepared by the authors by wet method had XRD and FT-IR 

characteristics similar to commercial Merck®. They were of low crystallinity, however, surface 
area and porosity were high. 

In contrast XRD and FT-IR of Nat.HA (animal bone calcined at 800oC) was characterised 
by the highest crystallinity. However, sintering of that material was possibly the cause of the 
lowest BET surface area and porosity.  

XRD and FT-IR characteristics of commercial Habiocer® indicate high, (similar to 
Nat.HA) crystallinity. That may suggest possible re-crystallisation in which thermal treatment of 
the material might have been involved, however, surface area and pores were much higher than 
those of Nat.HA.   
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