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In this study, numerical analysis on an Sn-based planner heterojunction perovskite device 

structure of Glass/ FTO/ ZnO/ CH3NH3SnI3/ CZTS/ Metal, with CH3NH3SnI3 as an 

absorber layer, was performed by using the solar cell device simulator SCAPS 1D. As an 

electron transport layer (ETL) and a hole transport layer (HTL), inorganic materials ZnO 

and CZTS (kesterite) were used. To optimize the device, the thickness of the absorber, 

electron, and hole transport layers, defect density, and absorber doping concentrations 

were varied, and their impact on device performance was evaluated. The effect of 

temperature and work function of various anode materials were also investigated. The 

optimum absorber layer thickness was found at 750 nm for the proposed structure. The 

acceptor concentration with a reduced defect density of the absorber layer enhances device 

performance significantly. For better performance, a higher work function anode material 

is required. The optimized solar cell achieved a maximum power conversion efficiency of 

30.41% with an open-circuit voltage of 1.03 V, a short circuit current density of 34.31 

mA/cm2, and a Fill Factor 86.39%. The proposed cell structure also possesses an excellent 

performance under high operating temperature indicating great promise for eco-friendly, 

low-cost solar energy harvesting. 
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1. Introduction 
 

Electrical energy demand increases day by day with the increase of industrialization and 

civilization, and most of the needs are full filed from the fossil fuels burning. Fossil fuel burning is 

one of the significant causes of global warming and severely pollutes the environment. So, the 

demand for clean and renewable energy sources increases progressively [1, 2]. Energy harvesting 

from solar radiation by photovoltaic technology has emerged as the most sustainable, clean, and 

eco-friendly renewable energy source to meet the world's energy demand [3]. Solar cell 

technology has developed throughout time due to decades of research by scientists. Perovskite is a 

3rd generation solar cell and a potential candidate for dominating other photovoltaic technologies 

due to its easy and low-cost manufacturing technique [4]. It also possesses excellent optical and 

electrical properties such as ideal band gap, transport of ambipolar charge carriers, long charge 

diffusion lengths, high absorption coefficient, and low exciton bond energy [5-8]. Power 

conversion efficiency (PCE) of Perovskite Solar Cell (PSC) increases promptly and exceeded 25% 

recently [9, 10]. However, it was relatively low (3.8%) when researchers started working on it in 

2009 [11] that makes it dominant in research interest in the global photovoltaic market.   The 

general structure of perovskite material is ABX3 (octahedral), where A, B are cations and X is the 

anion [12]. This structure makes it an excellent light absorber [13], and the photon energy can be 

converted into electricity using the photovoltaic effect [14]. The methylammonium (MA) lead 

halide is one of the promising perovskite absorber s with excellent photovoltaic performance [15]. 

Despite its superb properties and PCE, it faces significant problems in commercialization due to 
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toxic Lead (Pb) and stability issues [16-19]. Researchers have proposed numerous Lead-free 

perovskites where Pb is substituted by Sn (II), Ge(II), Bi(III), Sb(III), Ti (IV), etc. [20]. Sn-based 

methylammonium halide (MASnI3) has become most popular due to its outstanding optoelectronic 

features. MASnI3 possesses a direct band gap of 1.3 eV that can extract a larger range of the 

spectrum compared to lead-based perovskite materials [21]. On the other hand, TiO2 is a popular 

electron transport layer (ETL) for PSC. However, it requires high fabrication temperature which 

increases cost in manicuring of PSCs [22]. ZnO can be an alternative for TiO2 because of its wide 

band gap, higher electron mobility, simpler and low-cost fabrication technique [22]. Recently, 

Cu2Zn2Sn2S2 (CZTS) has been introduced as a hole transport layer (HTL) in PSCs [23]. CZTS is 

composed of abundant and nontoxic material with an amazing electrical and optical properties. It 

is widely recognized in the solar industry for its direct band gap, high hole mobility, and high 

absorption coefficient [24]. Researchers are working on developing solar cells with high 

efficiency, low-cost, and eco-friendly. The device structure proposed in this study, is unique and 

highly efficient apart from all existing devices, making it a viable contender for future solar cell 

technology fulfilling the demands. Solar cell capacitance simulator (SCAPS) is used to optimize 

the different parameters such as layer thickness, doping concentration. The effect of defect density 

operating temperature and metalwork function on the proposed solar cell were also investigated.  

 

 

2. Device structure and simulation methodology 
 

2.1. Device structure 

This work is a numerical simulation of a planer heterojunction Sn-based perovskite solar 

cell that performs under illumination AM 1.5G at 300K using SACPS-1D (3.3.08). Three main 

equations, i.e., the Poisson equation (1), electron continuity equation (2), and hole continuity 

equation (3), are used to simulate SCAPS-1D. 
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where D, ξ, G, Ψ, q, τp, τn, µp, µn, nt (x), n (x), pt (x), p (x), ND
+ (x) and NA

- (x) denote diffusion 

coefficient, electric field, generation rate, electrostatic potential, electron charge, hole lifetime, 

electron lifetime, hole mobility, electron mobility, trapped electrons concentration, free electrons 

concentration, trapped holes concentration, free holes concentration, the concentration of ionized 

donor, and concentration of ionized acceptor respectively. The direction along the thickness is 

denoted by x [25]. Seven different layers of heterostructure solar cells can be designed in SCAPS-

1D, and both light and dark environments can be simulated [26, 27]. The simulated solar cell 

device configuration was FTO/ZnO/MASnI3 (Light absorbing layer)/CZTS/Pt. The band diagram 

and grading of energy parameter are shown in Figure 1 (a-c), where p-type CZTS was used as a 

hole transport layer, MASnI3 as an absorber layer, and n-type ZnO as an electron transport layer. 

Furthermore, SnO2: F (FTO) was used as the transparent contact material, and various materials 

such as Cu, Ag, Au, Cr, Ni, and Pt were used as anodes. Band alignment of energy levels is very 

crucial in terms of solar cell device functionality. The valence band and conduction band 

alignment for each of the layers used in this investigation is shown in Figure 1(b,c), beginning 

with the ETL and progressing to the Perovskite and HTL layers. 
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Fig. 1. (a) Simulated PSC device configuration, (b) Energy band diagram, and (c) grading of energy 

parameters of the device. 

 

 

2.2. SCAPS simulation methodology 

The device parameter values were selected from experiments, literature, and theories. The 

primary physical parameters used in the simulation are listed in Table 1, and Table 2 shows the 

defect parameters within the absorber layer and at the device layer interfaces.  

 
Table 1. The basic parameters of each PSC layers [1, 4, 24, 28, 29]. 

 

Parameters FTO (TCO) ZnO (ETL) CH3NH3SnI3  

(absorber) 

CZTS (HTL) 

Thickness (nm) 100 10 

(variable) 

750 

(variable) 

200 

(variable) 

Bandgap energy, Eg (eV) 3.4 3.33 1.3 1.49 

Electron affinity, χ (eV) 4.5 4.1 4.17 4.1 

Relative permittivity, εr 9.1 9.0 8.2 7 

Conduction band density of states, Nc 

(cm−3) 

1.1 × 1019 2.2 × 1018 1 × 1018 2.2 × 1018 

Valance band density of states, Nv 

(cm−3) 

1.1 × 1019 1.9 × 1019 1 × 1018 1.8 × 1019 

Thermal velocity of electron and 

hole, (cm/s) 

1× 107 1× 107 1× 107 1× 107 

Electron mobility, µn (cm2/Vs) 20 100 1.6 25 

Hole mobility, µp (cm2/Vs) 10 25 1.6 20 

Donor concentration, ND (cm−3) 1.1 × 1019 1 × 1018 0 0 

Acceptor concentration, NA (cm−3) 0 0 1 × 1016 (variable) 1.7× 1018 
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Table 2. Defect parameters of absorber layer and device at interfaces [1, 4, 21, 24, 28, 29]. 

 

Parameters 

 

ZnO 

 

CH3NH3SnI3 

 

CZTS 

 

ZnO 

/CH3NH3SnI3 

interface 

CH3NH3SnI3/ CZTS 

interface 

Defect type Neutral Neutral Neutral Neutral Neutral 

σn (cm−2) 1 × 10–15 1 × 10–15 1 × 10–15 1 × 10–15 1 × 10–15 

σp (cm−2) 1 × 10–15 1 × 10–15 1 × 10–15 1 × 10–15 1 × 10–15 

Energy distribution Single Gaussian Single Single Single 

Characteristic energy (eV) – 0.100 – – – 

Energy level with respect 

to Ev (above Ev) (eV) 

0.600 0.600 0.100 0.600 0.600 

Defect density, Nt (cm−3) 1 × 1015 1 × 1015 

(variable) 

1 × 1015 1 × 1010 1 × 1010 

 

 

3. Result and discussion 
 

3.1. Optimization of thickness 

The absorber layer significantly influences the device's performance. The thickness of the 

absorber layer affects photovoltaic characteristics such as JSC, VOC, FF, and PCE, according to a 

previously published paper [30, 31]. To investigate the effect of the thickness of absorber layer, 

width of the layer was varied from 100 nm to 1000 nm in the device simulation, while the other 

parameters in Tables 1 and 2 remained constant. Figure 2 shows the simulation results for the 

change of thickness of the absorber layer.  

 

      

      
 

Fig. 2. Photovoltaic output as a function of absorber layer thickness. 
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The absorber layer thickness increases from 100 nm to 650 nm JSC and PCE increased 

rapidly and become almost saturated at 750 nm. At 750 nm, JSC was 34.1258 mA/cm2 and the 

maximum JSC (34.662 mA/cm2) was obtained at 1000 nm because of the significant absorption 

coefficient of perovskite [25]. At the same time, VOC and FF were decreased gradually with 

increasing the absorber layer thickness. VOC decreases because of the enhancement of the 

recombination rate of free charge carriers with increasing the absorber layer thickness 

[30]. Increased series resistance could be the cause of reduction in Fill Factor as a function of 

absorber thickness [25, 32]. Initially, The PCE rises gradually with increase of absorbing layer’s 

thickness and reached to maximum value of 25.99% at 750 nm and decreases with further increase 

of absorber thickness because of high recombination rate in thick absorber layers [25, 30, 33]. 

Effect of thickness of the electron and hole transport layers has been shown in Figure 3 and Figure 

4 respectively. Changing the thickness of the ETL and HTL has a negligible effect on the device 

performance. The thicknesses of the ETL and HTL were increased from 10 nm to 100 nm. All 

parameters such as VOC, JSC and efficiency become saturated after 20nm thickness of the ETL layer. 

 

      
 

      
 

Fig. 3. Photovoltaic output as a function of ETL thickness.  
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Fig. 4. Photovoltaic output as a function of HTL thickness. 

 

 

3.2. Effect of acceptor doping density in the absorber layer 

The acceptor doping density has a significant effect on the performance of perovskite solar 

cells. When CH3NH3SnI3 expose to air because of oxidation, Sn2+ is converted into Sn4+. So, it acts 

as a p-type semiconductor that affects the device's performance [34]. To avoid the formation of 

Sn2+ to Sn4+ SnO2 is added to the CH3NH3SnI3 [35, 36]. To find out the effect of acceptor carrier 

density in the absorber layer, the acceptor density is varied from 1014 to 1019 cm-3
 as Takashi et al. 

reported that the acceptor density can be varied up to 1019 cm-3 [37]. Figure 5 shows the variation 

in different photovoltaic parameters with changing the acceptor doping density. A slight change in 

photovoltaic response up to 1016 cm-3 was observed. That means no significant differences was 

occurred in the generation of photo generated carriers with changing the acceptor density. Under 

the same photon energy incident, the total output of photo generated carriers remains constant 

regardless of acceptor density [33]. The Fermi energy level of the hole drops as the acceptor 

doping concentration increases, and consequently, VOC rises, as shown in Figure 5. On other hand, 

Jsc first reduces moderately until 1016 cm-3 doping level after which it reduces rapidly. An increase 

in charge carrier recombination within the perovskite absorber layer could be the cause of 

decreasing Jsc [33]. The optimum acceptor concentration is adjusted at 1016 cm-3, and a maximum 

PCE of 26.91% was obtained for that concentration.   
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Fig. 5. Photovoltaic output as a function of acceptor concentration. 

 

 

3.3. Effect of defect density in the absorber layer 

Defect density is very crucial parameter to modify and control the performances of solar 

cell. The degradation phenomena such as PID of PV solar cell also depend on the defect density 

[38]. Various types of defects be existent within the perovskite absorber layer for example: lattice 

vacancies, interstitial, Schottky, and Frenkel defects as point defects. Aside from that, higher-order 

defects such as grain boundaries and dislocations also exist in the absorber layer [39]. Impurity 

defects in the absorber layer are produced during the self-doping process that converts the 

semiconductor to p-type [36, 40]. These defects introduce energy band gaps with shallow or deep 

levels. Charge carriers are trapped and boosted non radiative recombination result as a 

consequence of these defects [33, 39]. To investigate the influence of length of diffusion on 

photovoltaic responses, the electron's diffusion length was adjusted from 46 nm to 4600 nm while 

the defect density was varied from 1018 to 1014 cm-3[41]. Hao et al. [40] Lazemi et al. [30] and Du 

et al. [33] have all used a similar method to modify defect density. The effect of defect densities on 

the photovoltaic characteristics is illustrated in Figure 6. It indicates that when the defect density 
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1.03 V, 86.44%, and 30.37% respectively. The defect density influences the recombination rate 

specially the Shockley Read Hall (SRH) recombination category [25, 30, 42]. The recombination 
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conduction band offset reduces the recombination between the absorber/buffer interfaces. 

According to Minemoto et al. [41], a CBO offset of around 0.3 eV reduces the recombination at 

the interface, optimizing the device performance [33]. Various researchers observe extensive 

carrier mobility, which indicates the large diffusion length [36, 42]. Equation (6) defines the 

diffusion length (LD) of charge carriers.  

 

𝑅 =
𝜏𝑛,𝑝
−1 (𝑛𝑝−𝑛𝑖

2)

𝑛+𝑝+2𝑛𝑖𝑐𝑜ℎ(
𝐸𝑡−𝐸𝑖
𝑘𝑇

)
                                                                    (4)          

                                                                                                                                   

𝜏𝑛,𝑝 =
1

𝜎𝑛,𝑝𝑣𝑡ℎ𝑁𝑡
                                                                          (5) 

 

𝐿𝐷 = √𝐷𝜏                                                                             (6) 

 

where, Et, Ei, vth, ni, n, p, σn,p, Nt, and D are the energy level of the trap defects,  intrinsic energy 

level, charge carriers velocity, intrinsic density, electron density, hole density, capture cross 

section of charge carriers, defect density absorber layer and the diffusion coefficient, respectively. 

 

3.4. Metal work function 

The rectifying or ohmic behavior at the metal back contact/HTL interface was investigated 

by using various anode materials with different metal work functions. In this simulation, we have 

used Cr, Ag, Cu, Au, Ni, and Pt with work function of 4.5eV, 4.74 eV, 5.0 eV, 5.1 eV, 5.15eV and 

5.7 eV, respectively [43, 44]. The barrier for the hole rises when the work function of contact 

materials decreases, as shown in Figure 7. Equation 7 expresses the potential energy barrier of 

surface (𝜙𝐵) at the anode/CZTS junctions.  

 

𝜙𝐵 =
𝐸𝑔

𝑞
+ 𝜒 − 𝜙𝑀                                                                      (7) 

 

where, Eg, χ, and 𝜙𝑀 are the bandgap of CZTS, the electron affinity of CZTS, and anode's work 

function, respectively.  
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Fig. 6. Photovoltaic output as a function of defect density. 

 

 

As the value of the metal work function increases, the energy barrier decreases, as 

expresses in Eq. 7, consequently the efficiency of the cell increases as shown in Figure 8.b. The 

impact of anode material on photovoltaic properties of PSC and J-V characteristics are depicted in 

Figure 8 (a, c). The PCE of the cell enhanced as the anode's metal work function increases.  

 

 
 

Fig. 7. PSC band diagram with different anode materials. 
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Fig. 8. (a) PCE and (b) FF of different anode material (c) Effect of work function on J-V characteristics. 

 

 

 
 

Fig. 9.  Quantum efficiency curves with different thicknesses of the absorber layer. 
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Table 3. Comparison among some existing work. 

 

Device Structure 

 

Open 

Circuit 

Voltage 

(V) 

Short 

Circuit 

Current 

(mA/cm
2
) 

Fill 

Factor 

(%) 

Efficiency 

(%) 

Reference 

FTO/TiO2/ CH3NH3SnI3/CuO2/Pt 0.93 40.14 75.78 28.39 [1] 

FTO/ZnO/CH3NH3GeI3/FAMASnGeI3/Cu2O/Au 1.07 28.36 84.46 26.72 [2] 

FTO/TiO2/FASnI3/Spiro-OMeTAD/Au 1.81 31.20 33.72 19.08 [20] 

ZnO(nr)/ CH3NH3SnI3/spiro-OMeTAD 0.9024 31.84 72.71 20.21 [45] 

ZnO(nr)/ CH3NH3SnI3/Cu2O 0.8467 32.26 74.02 20.23 [45] 

Cd0.5Zn0.5S/ CH3NH3SnI3/MASnBr3 0.96 32.48 76.40 23.86 [46] 

In2S3/ CH3NH3SnI3/Spiro-OMeTAD 0.75 33.44 77.28 19.32 [47] 

FTO/ZnO/ CH3NH3SnI3/CZTS/Pt 1.03 34.32 86.39 30.42 This work 

 

 

3.5. Effect of operating temperature 

The performances of the solar cell typical tested at STC condition having operating 

temperature of 25°C, however, in outdoor exposed condition, the cell temperature is reached to 60-

65°C. To investigate the device's thermal performances, the cell temperature was varied from 

283K to 373K in this simulation. The effect of temperature variation in Figure 10. With raise of 

temperature, the VOC decreases significantly and the JSC increases slightly. The decrease in VOC 

with increasing temperature is caused by an increase in reverse saturation current [48]. Equation 8 

governs the effect of temperature on VOC.  

 

𝑉𝑂𝐶 =
𝐾𝑇

𝑞
ln(

𝐽𝑆𝐶

𝐽0
+ 1)                                                                        (8) 

 

          
 

        
 

Fig. 10. Effect of the temperature on device performance with increasing temperature. 
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Here, J0, K, T are the reverse saturation current, Boltzmann constant, and temperature, 

respectively. A slight increment in JSC has been noted up to 313K, then drops. Increasing the 

temperature decreases the band gap of the absorber layer, requiring less energy for electrons to 

move from the valance band to the conduction band [48]. Furthermore, the change in JSC is 

relatively tiny, and it is insufficient to affect the device performance at higher temperatures. Due to 

the dependence on VOC and JSC, efficiency and FF are high at low temperatures. At 283K, the 

device efficiency and FF were 31.29% and 87.06%, respectively. And it starts to decrease 

correspondingly as the temperature goes up. 

 

 
4. Conclusion 
 

In this simulation work, Glass/FTO/ZnO/CH3NH3SnI3/CZTS/Pt, a planner heterojunction 

perovskite solar cell, was numerically analyzed by using solar cell device simulator SCAPS 1D. 

The effects of varying the thickness, defect density, and acceptor concentration of the perovskite 

layer, the work function of anode materials, and the impact of temperature variation on the 

performance of the proposed solar cell structure have been investigated. The optimal absorber 

thickness was 750 nm, and the lowered defect density of 1014 cm-3 in perovskite absorber layer 

significantly enhanced the photovoltaic performance and approached towards the SQ limit. 

 The significant concerns for future research are reducing defect density and enhancing 

Sn2+ stability of absorber layers, which might be addressed by upgrading the device's fabrication 

technology. An acceptor concentration of 1016 cm-3 of CH3NH3SnI3 is adequate to attain desirable 

device performance. For lower work function materials, the Schottky barrier was developed at the 

anode/CZTS interface; thus, high work function materials, such as Pt, are required for ohmic 

contact. The obtained PCE, VOC, JSC and FF were 30.42%, 1.03 V, 34.32 mA/cm2, and 86.39% 

respectively with a broad-spectrum absorption (10-950nm) under optimal conditions. The 

simulation results achieved in this work would pave the way for an eco-friendly, low-cost, and 

high-efficiency PSC fabrication process.  
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