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Structural, electronic, elastic and thermodynamic properties of the SnxBi(16-x) (x=7, 9, 10, 

12, 13, 14, 15) solid solution alloys with tetragonal structure were investigated by means 

of first-principles calculations within the framework of density functional theory. The 

results of enthalpies of formation and cohesive energy show that the stability of the alloys 

increases with the decrease of the content Bi. The electronic structure was further 

investigated to understand the underlying mechanism of the structural stability of the 

SnxBi(16-x) alloys. The single-crystal elastic constants were calculated, showing that the 

SnxBi(16-x) alloys are mechanically stable structure. Then the bulk modulus B, Young’s 

modulus E, shear modulus G and Poison’s ratio  were estimated for polycrystalline 

SnxBi(16-x) alloys from the elastic constants. The ductility and plasticity of SnxBi(16-x) alloys 

were improved with decrease of the content of Bi. The elastic anisotropy was also further 

discussed in details. The substitution of Sn atoms by Bi makes the SnxBi(16-x) alloys 

elastically more isotropic for the {001} shear plane along the <010>direction. Finally, 

thermodynamic properties such as the Debye temperatures, the specific heat, and melting 

temperature for the SnxBi(16-x) alloys were estimated from elastic properties.  
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1. Introduction 

 

Pb-containing solder alloys were widely used in the electronic packaging industry. These 

alloys are reliable, well tested and quite inexpensive. However, since lead is harmful to human 

health due to pollution of groundwater, an urgent necessity exists to develop appropriate 

substitutes for the free lead-free solder alloys. A large variety of lead-free solders have already 

been developed, mainly involving the Sn-Cu, Sn-Ni and Sn-Ag systems [1]. These new lead-free 

solders have been identified as the most promising alternatives to the eutectic Sn-Pb solder. 

However, these new lead-free solders have higher melting point (212℃) than eutectic lead-tin 

solder (183℃), which is the main issue in the electronic packaging, and too high a soldering 

temperature coulddamage electronic devices and polymer based printed circuit boards [2, 3]. 

Sn-Bi solder alloys with low melting temperature (only 138℃ for Sn-58Bi solder alloys) 

are appropriate for temperature-sensitive components. Many studies, related to microstructure, 

interfacial intermetallic compounds, mechanical properties, and electromigration property, about 

Sn-58Bi have been conducted. Felton et al. [4] studied the wetting properties and the effects of 

aging on the microstructure of Sn-Bi solders. The results show that Sn-Bi solders do not wet bare 

copper well, but that they do wet copper having a hot-dipped Sn-Bi coating. During aging, tin is 

depleted from the solder/base metal interface. The two-phase Sn-Bi microstructure coarsens during 

aging; the rate of coarsening can beslowed by adding 1.0 wt. % Cu to the solder. Huang et al. [5] 

investigated the interfacial reaction between Sn-57Bi-(Co) and Cu. The results showed that only 

Cu6Sn5 phase was formed in molten Sn-57Bi/solid Cu couples, while both Cu6Sn5 and Cu3Sn 
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phases were formed in solid Sn-57Bi/solid Cu couples. Addition of Co suppressed the formation 

of Cu3Sn.Yang et al.[6] reported that the microstructure of Sn-Bi composite solder can be refined 

by increasing alloying with graphite. Zhang and Chen suggested that addition of multi-walled 

carbon nanotubes could refine thegrains and reduce the Bi content in the deposited Sn-Bi alloy [7]. 

Song et al.[8] revealed that the Bi-rich precipitates appearing in high-Bi samples lead to quick 

crack propagation. Adding exotic elements to refine the grain size is viewed asan advisable 

method to enhance the mechanical properties of Sn-Bi solder. Shen et al. [9] revealed that Cu 

additions into Sn-Bi alloy refined the grain size of the Bi-rich phase and decreased the interface 

brittleness and improved the shear strength of Sn-Bi solder joints. In contrast, Zn weakened the 

shear strength due to the brittle nature of the Zn-rich phase. Li et al. [10] reported that the tensile 

strength of the Sn-Bi-In solder alloys and solder joints declined with increasing Bi content. 

While industrial interest in these solders is increasing, there has been relatively little 

fundamental research on theirthe structural stability, electronic properties, elastic properties.The 

present work focuses solely on the DFT based ab initio atomistic computational method to study 

electronic properties and the elastic properties of Sn-Bi alloys. The study of electronic properties 

of Sn-Bi alloys is important because the elastic properties are manifestations of the bonding 

between different elements at the atomic level. Also there is no experimental data available 

regarding the electronic band structure to study its electronic properties. Further the Debye 

temperature along with longitudinal, transverseand average sound velocities are calculated at zero 

pressure. 

 

 
2. Computational methods 

 

The 2×1×1 supercells of SnxBi(16-x) (x=7, 9, 10, 12, 13, 14, 15) solid solution alloys 

investigated in this study were constructed mainly based on the Sn-type structural models. The Sn 

has a Tl2 crystal structure with space group I4/mmm (No.139) where the Sn atom is in 2a (0, 0, 0) 

Wyckoff site. The tetragonal 2×1×1 supercell contains 16 atoms. The different lattice positions of 

2a Wyckoff site in Sn supercell of 2×1×1 are replaced by Bi atom.The series of SnxBi(16-x) such as 

Sn7Bi9, Sn9Bi7, Sn10Bi6, Sn12Bi4, Sn13Bi3, Sn14Bi2, Sn15Bi, were obtained, where the weight 

percentages of Bi were 69.3%, 57.7%, 51.3%, 37%, 28.9%, 20.1% and 10.5% respectively. Fig. 1 

show the structural models of SnxBi(16-x) alloys. According to the Sn-Bi phase diagram, Sn7Bi9 and 

Sn9Bi7 are hypereutectic alloys and the rest is hypoeutectic alloys. 

All calculations were performed using Density Functional Theory (DFT) as implemented 

in the Quantum-ESPRESSO [11]. The ion–electron interaction was modeled by ultrasoft 

pseudopotentials [12]. Generalized gradient approximation (GGA) with the PBE 

exchange-correlation functional [13]was used. The kinetic energy cut-off value for plane-wave 

expansions was set as 380 eV for all the calculations.The larger values of the cut-off energy of 

atomic wave functions have been tested, such as 400 eV, 450 eV and 500 eV etc. Tests indicated 

that the total energies of the crystals have been not obviously decreased. The k-point meshes for 

Brillouin zone sampling were constructed using Monkhorst–Pack scheme[14] with 6×3×3 grids 

for all structural models. Convergence with respect to the k-point sampling for the Brillouin zone 

integration was tested independently on the these alloys using regular meshes of increasing 

density.Tests indicate that the total energy converges to 1 meV/atom. The valence electronic 

configurations were taken to be 5s
2
5p

2
 for Sn, 6s

2
6p

3 
for Bi. For all structures the lattice 

parameters, the volume and the atom positions were allowed to relax simultaneously. The 

relaxations of cell geometry and atomic positions were carried out using a conjugate gradient 

algorithm until the Hellman–Feynman force on each of the unconstrained atoms was less than 

0.01eV/Å. The self-consistent calculations were considered to be converged when the difference in 

the total energy of the crystal did not exceed 10
-6

 eV at consecutive steps. After the structures are 

optimized, the total energies are recalculated self-consistently with the tetrahedron method 

[15].The latter technique was also used to calculate the electronic density of states (DOS). 
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                    (a)           (b)             (c)             (d) 

 

                    (e)             (f)            (g)             (h) 

Fig. 1.Crystal structures of Sn and SnxBi(16-x) alloys, (a) Sn,(b) Sn7Bi9, (c) Sn9Bi7, (d) Sn10Bi6,  

(e) Sn12Bi4, (f) Sn13Bi3, (g) Sn14Bi2, (h) Sn15Bi. 

 

 

3. Results and discussion 
 

3.1.Phase stability 

Generally, the evaluation of the heat of formation per atom isrelative to the 

composition-averaged energies of the pure elementsin their equilibrium crystal structures [16]. The 

Hf of SnxBi(16-x) structure at a low temperature can be expressed as follows: 

 

               tot Sn tot solid Bi tot solid Sn Bi( (Sn) (Bi) ) / ( )fH E N E N E N N                 (1) 

 

where
totE is the total energy of SnxBi(16-x) in equilibrium lattice per unit ;

tot solid(Sn)E and
tot solid(Bi)E  

are the total energy of tetragonal Sn and rhombohedral Bi in their stable state per unit cell, 

respectively; NSn and NBi refer to the numbers of Sn and Bi atoms in unit cell of SnxBi(16-x), 

repectively. In the present work, we calculate the single atomic energy by the following method: at 

first, the energy of a pure metal crystal in the solid state was calculated, then the energy was 

divided by the number of atoms involved in the crystal, and this result is the energy of a single 

atom in the pure metal. The calculated energies of Sn and Bi pure metals for our considered 

systems were -87.5691 eV and -147.4482 eV, respectively.The calculated formation enthalpies of 

SnxBi(16-x) alloys are listed in Table 1. Generally, the lower the formation enthalpy is, the more 

stable the crystal structure is. It was found that the formation enthalpies of SnxBi(16-x) alloys 

decreased with the decrease of the content Bi atoms in structure model, indicating that the stability 

of the alloys increases correspondingly. 

The cohesive energy (Ecoh) can be expressed as follows: 

    c o h t o t S n t o t i s l o a t e d B i t o t i s l o a t e d S n B i( ( S n ) ( B i ) ) / ( )E E N E N E N N   
         

(2) 

where
tot isloated(Sn)E and

tot isloated(Bi)E  are the total energy of the isolated constituent atoms at infinite 

separation. 

In order to obtain an accurate value for the cohesive energy, the energy calculations for 

both isolated atom and the crystal must be performed at the same level of accuracy. The energy of 

an isolated atom has been calculated using a cubic supercell (irrespective of crystal structure of the 

corresponding solid) with large lattice parameter of 10Å so that the inter atomic interaction is 
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negligible. The calculated energies of isolated atoms Sn and Bi are -85.687and 

-147.4713eV·atom
-1

, respectively. According to Eqs. (2), the obtained cohesive energies of 

SnxBi(16-x) alloys are listed in Table 1. It is found that the cohesive energy of the SnxBi(16-x) alloys 

increases with the decrease of the content Bi atoms in structure model. In general, the cohesive 

intensity and structural stability of the crystal are correlated with its cohesive energy [17] being 

defined as eitherthe energy needed to form the crystal from free atoms or the work needed to 

decompose the crystal into isolated atoms. The larger the cohesive energy, the more stable is the 

corresponding crystal structure.The resultshave shown that the hypoeutectic Sn-Bi alloys is more 

stable than hypoeutectic Sn-Bi alloys. 

 

Table 1.Optimized results for SnxBi(16-x) alloys including total 

energy Etot, formation enthalpy Hf and cohesive energyEcoh. 

 

Alloys Etot(eV) Hf(eV) Ecoh(eV) 

Sn7Bi9 

Sn9Bi7 

Sn10Bi6 

Sn12Bi4 

Sn13Bi3 

Sn14Bi2 

Sn15Bi 

-1948.1338 

-1832.0751 

-1773.6549 

-1655.5498 

-1596.5086 

-1538.4379 

 -1479.4521 

-0.5073 

-0.7385 

-0.8297 

-0.9330 

-0.9854 

-1.098 

-1.154 

-1.318 

-1.787 

-1.997 

-2.339 

-2.510 

-2.742 

-2.917 

 

 

3.2.Electronic structure 

To further understand the formation mechanisms, the electronic properties of SnxBi(16-x) 

alloys were analyzed based on the total and partial densities of states (DOS and PDOS) of these 

alloys, as shown in Fig. 2. It could be found that the hybridization of Sn-s and Bi-p, Sn-p and Bi-s 

states was believed to be the dominant factor for the stability improvement of SnxBi(16-x) alloys. It 

can be seen from Fig. 2 that the main bonding peaks of SnxBi(16-x) alloys locate in the range from 

−13 eV to 3 eV, originating from the contribution of valance electron numbers of Sn-5s, Sn-5p, 

Bi-6s, Bi-6p.The bonding peaks appeared in the energy range from -13 eV to -9.5 eV, which were 

formed by the hybridization between the Bi-6s orbit and the Sn-5p, Sn-5s orbits. The bonding 

peaks appeared in the energy range from -9.0 eV to -5.0 eV were formed by the hybridization 

between the Sn-5s orbit and the Bi-6p, Bi-6s orbits. For the bonding peaks in the energy range 

from -5.0 eV to 3.0 eV, the hybridization between the Sn-5p orbit and the Bi-6p orbit was 

predominant. As the content of Bi in SnxBi(16-x) alloys decreased, the hight of the bonding peaks 

between around -13 eV and -9.5 eV decreased. It is indicated that the hybridization between the 

Bi-6s orbit and the Sn-5p, Sn-5s orbits is continually weakening. Moreover, the values of the total 

DOS at Fermi level are larger than zero for SnxBi(16-x) alloys, which indicats the metallic 

behavior.The bonding electron numbers at the Fermi level, N(EF) for Sn7Bi9, Sn9Bi7, Sn10Bi6, 

Sn12Bi4, Sn13Bi3, Sn14Bi2, Sn15Biis 9.1, 8.9, 8.7, 8.6, 8.3, 7.6, 7.4, respectively. In general, N(EF) on 

DOS plot can be used to characterize the activity of valance electrons of the atoms in crystal. 

Namely, the smaller N(EF), the less is change probability of the electronic structures of the crystal 

when external conditions change, thus the crystal has the higher stability [18]. The stability of 

SnxBi(16-x) alloys improved with the decrease of the content of Bi, which are entirely consistent with 

the results of the calculated enthalpies of formation cohesive energies. 
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Fig. 2.The calculated total density of states and partial densities of states of SnxBi(16-x) alloys, 

 (a) Sn7Bi9, (b) Sn9Bi7, (c) Sn10Bi6, (d)Sn12Bi4, (e) Sn13Bi3, (f) Sn14Bi2, (g) Sn15Bi. 
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3.3. Elastic properties 

Elastic constants are the measure of the resistance of a crystal to an externally applied 

stress. Through imposing small strain on the perfect lattice, the elastic constants can be obtained. 

For tetragonal SnxBi(16-x) crystals, there are six independent elastic constants, i.e., C11, C12, C13, C33, 

C44 and C66. The calculated elastic constants at the ground states are listed in Table 2. 

The elastic stability is an ecessary condition for a solid to exist.The intrinsic mechanical 

stability of a solid is in general determined by certain conditions related to the crystal symmetry 

[19] and the following criteria based on relations between elastic constants have to be fulfilled. 

For tetragonalphases, 

11 33 132 0C C C   , 
11 33 12 132 2 4 0C C C C     and 

11 33(2 ) / 3 0C C B       (3) 

As shown in Table 2, all the elastic constants of SnxBi(16-x) alloys satisfy the above restrictions, 

so all these structures are mechanically stable. 

 

Table 2.The calculated elastic constants, Cij (in GPa) for SnxBi(16-x) 

(x=7, 9, 10, 12, 13, 14, 15) alloys. 

 

Alloys C11 C12 C13 C33 C44 C66 

Sn7Bi9 

Sn9Bi7 

Sn10Bi6 

Sn12Bi4 

Sn13Bi3 

Sn14Bi2 

Sn15Bi
 

60 

58.3 

56.4 

54.7 

53.4 

52.7 

51.1 

36.9 

37.4 

38.1 

39.2 

40.5 

41.9 

43.1 

88.1 

89.2 

90.8 

91.9 

93.1 

94.6 

96.4 

220.2 

222.6 

224.5 

225.3 

226.2 

227.6 

229.3 

44.8 

42.4 

38.1 

36.3 

34.9 

32.6 

30.2 

44.7 

43.6 

41.4 

38.3 

35.9 

33.8 

30.6 

 

 

The elastic properties of polycrystalline materials are usually characterized by the elastic 

moduli, suchas bulk modulus(B), Young's modulus(E), shear modulus(G) and Poisson ratio . The 

bulk B and the shear modulus G for tetragonal crystal structure are taken as [20]: 

 

                  11 12 13 332 / 9( 2 / 2)B C C C C   
                            

(4) 

and 

                 11 33 12 13 44 661/15(2 2 6 3 )G C C C C C C     
                 

(5) 

 

Then, Young’s modulus E and Possion’s ratio  can be calculated by [21]: 

 

9 / (3 )E BG B G 
                                     

6) 

and 

                 
(3 2 ) / (6 2 )B G B G   

                                    
7) 

 

All calculated results based on Eqs. (4)-(7) are listed in Table 3. It can be found that the 
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calculated bulk modulus B increase and Young’s modulus E, shear modulus G decrease with 

decrease of the content of Bi in SnxBi(16-x) alloys. It is indicated that 

the capability of plastic deformation of SnxBi(16-x) alloys increases with decrease of the content of 

Bi. On the other hand, Poisson’s ratio  is used to quantify the stability of the crystal against shear, 

which can provide more information on the characterizations of the bonding forces than elastic 

constants [22]. The larger the Poisson’s ratio is, the better the plasticity is. In this work, the 

calculated values of  increase with decrease of the content of Bi in SnxBi(16-x) alloys, as listed in 

Table 3, which indicates that the plasticity of SnxBi(16-x) alloys are improves. 

The ratio of the bulk modulus to shear modulus of crystalline phases, proposed by Pugh 

[23], can empirically predict the brittle and ductile behavior of materials. A high B/G ratio is 

associated with ductility, whereas a low value corresponds to brittle nature. The critical value 

which separates ductile and brittle material is around 1.75. The calculated results in Table 3 show 

that SnxBi(16-x) alloys exhibit good ductility. Besides B/G, the ductility behavior was also proposed 

to be related to the so-called Cauchy pressures[24]. For phases with tetragonal symmetry, the 

Cauchy pressures aredefined as: 

12 661C C C 
                                 

(8) 

                     13 442C C C 
                                 

(9) 

Positive or negative values of C1 and C2 indicate ductile or brittle behavior, respectively. 

The calculated values of C1 and C2 were shown in Table 3. It can be seen that despite the fact that 

the Cauchy pressures C1 for Sn7Bi9, Sn9Bi7, Sn10Bi6 are negative, to a certain extent, that should 

indicate the brittle behavior, both C1 and C2 of all SnxBi(16-x) alloys exhibit general trend to have 

higher values as the Bi content decreases. This indicates that the ductility of SnxBi(16-x) alloys are 

improved with decrease of the content of Bi. 

The elastic anisotropy of crystal is closely correlated with the possibility to induce 

microcracks and dislocations in the materials [25,26]. The shear resistance of crystal (the energy 

change in a crystal associated with the shear modes along different slip directions) is characterized 

by the elastic anisotropy factors. In the tetragonal crystal, the anisotropic behavior can be 

described by elastic anisotropy factors: 

1 66 11 122 / ( )A C C C 
                             

(10) 

2 44 11 33 134 / ( 2 )A C C C C                           (11) 

3 44 66/A C C
                                

(12) 

A1, A2 and A3is corresponding to the {001} shear plane along the <010>direction, the {011} 

shear plane along the <011>direction and {100}shear plane along the <100>direction,respectively. 

For anisotropic crystal the factors A1, A2 and A3 must be unity. The deviation of the anisotropic 

factors from unity is a measure for the elastic anisotropy. The calculated values of the elastic 

anisotropy factors for SnxBi(16-x) alloys listed in Table 3. The evident correlation between the values 

of elastic anisotropy factors and number of Bi atoms in SnxBi(16-x) was found: the A1 elastic 

anisotropy factors increases with decreasing number of Bi atoms whereas A2 decreases. This means 

that the substitution of Sn atoms by Bi makes the SnxBi(16-x) alloys elastically more isotropic, 

especially for the {001} shear plane along the <010>direction. 

 

 

 

 



434 

 

Table 3.The calculated bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), B/G, 

Poisson’s ratio ν, anisotropic index A1, A2and A3 for SnxBi(16-x) (x=7, 9, 10, 12, 13, 14, 15) alloys. 

 

Alloys B G E B/G ν C1 C2 A1 A2 A3 

Sn7Bi9 

Sn9Bi7 

Sn10Bi6 

Sn12Bi4 

Sn13Bi3 

Sn14Bi2 

Sn15Bi 

93.4 

94.0 

94.8 

95.5 

96.4 

97.7 

98.8 

35.3 

33.9 

31.4 

29.6 

28.2 

26.6 

24.6 

94.1 

90.8 

84.7 

80.5 

77.1 

73.1 

68.1 

2.64 

2.77 

3.02 

3.22 

3.41 

3.67 

4.02 

0.33 

0.33 

0.35 

0.36 

0.37 

0.38 

0.39 

-7.8 

-6.2 

-3.3 

0.9 

4.6 

8.1 

12.5 

43.3 

46.8 

52.7 

55.6 

58.2 

62 

66.2 

3.87 

4.17 

4.52 

4.94 

5.56 

6.25 

7.65 

1.72 

1.65 

1.53 

1.51 

1.49 

1.43 

1.38 

1.00 

0.97 

0.92 

0.95 

0.97 

0.96 

0.99 

 

 

3.4. Thermodynamic properties 

The Debye temperature D is a fundamental attribute of a solid connecting elastic 

properties with thermodynamic properties such as specific heat, sound velocity and melting 

temperature. It can be calculated from the averaged sound velocity, vm by the following equation 

[27]: 

                       

1
3A

D m

B

Nh 3
[ ( )]

k 4π

n
v

M


 

                           

(13) 

where h is Planck’s constant, kB is Boltzmann’s constant, NA is Avogadro’s number, n is the 

number of atoms in the unit cell, M is the molecular weight and  is the density. The average 

sound velocity in the polycrystalline material is approximately given by [27]: 

                       

1/3

m 3 3

s l

1 2 1
[ ( )]
3

v
v v

                              (14) 

wherevl and vs are the longitudinal and transverse sound velocity, respectively, which can be 

obtained using the shear modulus G and the bulk modulus B from Navier’s equations [28]: 

                     

l

4 / 3B G
v




 and s

G
v


                         (15) 

The calculated values of sound velocity and Debye temperature as well as the density for 

the SnxBi(16-x) alloys are given in Table 4. The Debye temperature of SnxBi(16-x) alloys increases 

with decreasing numberof Bi atoms. As a rule of thumb, a higher Debye temperature means a 

larger associated thermal conductivity [29]. Therefore,the decrease of Bi content can improve 

thermal conductivity of SnxBi(16-x) alloys. 

The melting temperature is considered to be an important index to evaluate heat resistance 

of alloy materials. For tetragonal structural metals, the melting temperature, Tm can be expressed 

as[30]: 

                    m 11 33254K (4.50K / GPa)[1/ 3(2 )] 300KT C C              (16) 

In present work, a minus sign can be slected in the Eq. (16). The calculated values of the 

melting temperature for SnxBi(16-x) are listed in Table 4. It can be seen that the melting temperature 

decreases with the decreasing number of Bi atoms. It can be understood due to higher Young’s 

modulus, shear modulus for those alloys. 
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In the approximation of Debye model, the specific heat of the solid, Cv can be obtained 

from Debye temperature by the following equation [31] 

         

D

4
/

3

v A B D 20
9 k ( / ) d

( 1)

x
T

x

x e
C N T x

e




                      (17) 

where T is the temperature (K).  

The calculated values of the specific heat of SnxBi(16-x) alloys the are shown in Fig. 3. The 

specific heat of these alloys is similar and increases with increasing temperature below D. 

However, the specific heat of these alloys is gradually close to 25 J/mol·K for the high temperature 

case (T>>D), which is the Dulong-Petit result (equal to 3NAkB) from classical thermodynamics. 

For low temperature case ( T<<D), the electron specific heat becomes significant for metals and is 

combined with the above specific heat in the Einstein-Debye specific heat [32].  

 

Table 4. The calculated density (), the longitudinal, transverse, and average sound velocity  

(vl, vs, vm), the Debye temperatures (D) and the melting temperature (Tm). 
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Fig. 3.The dependence of specific heat on temperature for SnxBi(16-x) alloys. 

 

 

4. Conclusions 
 

In summary, we have calculated and analyzed the structural, electronic, elastic and 

thermodynamic properties of the SnxBi(16-x) alloys by the plane-wave ultrasoft pseudopotential 

method based on the density-functional theory. The calculated enthalpies of formation and 

cohesive energy reveal that the stability of SnxBi(16-x) alloys increases with the decrease of the 

content Bi. Electronic densities of states haves hown that the s-p and p-p hybridizationsin SnxBi(16-x) 

alloys becomes continually weakening, as the content of Bi decreased.Then the bulk modulus B, 
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Young’s modulus E, shear modulus G and Poison’s ratio  were estimated for polycrystalline 

SnxBi(16-x) alloys from the elastic constants. The ductility and plasticity of SnxBi(16-x) alloys were 

improved with decrease of the content of Bi. The elastic anisotropy was also further discussed in 

details. The substitution of Sn atoms by Bi makes the SnxBi(16-x)alloys elastically more isotropic for 

the {001} shear plane along the <010>direction. Finally, thermodynamic properties such as the 

sound velocity, the Debye temperatures, the specific heat, and melting temperature for the 

SnxBi(16-x)  alloys were also derived from elastic properties. 
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