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The kinetics of the crystallization process of glassy Cu

18
As

30
Te

52
 alloy was studied under 

nonisothermal conditions using differential scanning calorimetry (DSC). Three exothermic 

peaks were observed, indicating the presence of three distinct stages of crystallization. The 

kinetic parameters (the effective activation energy (E), the preexponential factor (A) and 

the Avrami exponent (n) ) for the three stages were evaluated using model-free and model-

fitting analysis. The insignificant variation of n, E, and A with extent of conversion during 

the progress of first peak crystallization shows that this stage of transformation can be 

described by single-step mechanism of crystallization. For the subsequent stages of 

crystallization, the behavior of the kinetic parameters indicates that multi-step mechanisms 

are involved in the transformation. Based on the model-fitting analysis of the present data, 

the reaction models, g(), describing the crystallization stages is the Avrami-Erofeev 

model. 
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1. Introduction 
 

Differential scanning calorimetry (DSC) technique is widely used to study thermal 

properties of glassy materials. This kinetic study can provide important information on nucleation 

and growth mechanisms associated with crystallization process in glasses. Such information is 

essential to gain proper understanding of the fundamental issues related to the nature of 

crystallization as well as to obtain glasses with better characteristics for a variety of technological 

applications [1,2]. 

The rising interest in the glassy Cu-As-Te systems can be attributed to the possible 

applications on thermoelectric devices [3,4] and other practical applications. The complexity of 

crystallization processes in these systems attracted the attention of many authors [3-20]. Multiple 

exothermic peaks are widely observed in the DSC experiments. 

The objective of this paper was to study the kinetics of crystallization in Cu
18

As
30

Te
52 

chalcogenide glass using model-fitting and model-free methods to provide clues about 

crystallization mechanism. DSC nonisothermal experiment will be analyzed to evaluate the kinetic 

parameters and the reaction model that can be used to describe the crystallization processes.   
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2. Experimental 
 

Bulk material was prepared by the well-established melt-quench technique. High purity 

(99.999%) Te, As and Cu in appropriate atomic percentage proportions were weighed and sealed 

in a quartz glass ampoule under a vacuum of 10
-5

 Torr. The contents were heated to about 1250 K 

for 36 h. During the melt process, the tube was frequently shaken to homogenize the resulting 

alloy. 

DSC experiments were performed using Shimadzu DSC-60 instrument, with a temperature 

accuracy of ±0.1 K under dry nitrogen supplied at a rate of 35 mil/min. The samples, 2-3 mg, were 

encapsulated in standard aluminum pans. Nonisothermal DSC curves were obtained at selected 

heating rates between 3–99 K/min. The temperature and enthalpy calibrations were checked with 

indium ( Tm = 429.75 K, ΔHm = 28.55 J/g) as a standard material supplied by Shimadzu. 

The structure of the samples was examined using a Shimadzu XRD-6000 X-ray 

diffractometer using Cuk radiation  1 5418 A . . The X-ray tube voltage and current were 

40 kV and 30 mA, respectively.  

Qualitative and quantitative calculations were performed using the EDX technique 

accomplished with SEM from the displayed characteristic X-ray pattern. The results obtained are 

shown in Fig. 1. The composition of the alloy was determined and found to be 18, 30 and 52 at.% 

for Cu, As and Te, respectively. 

 
Fig. 1.  EDX results of the chalcogenide Cu18As30Te52 glass. 

 

 

3. Results and discussion 
 
DSC measurements were conducted on samples of Cu

18
As

30
Te

52
 by heating from room 

temperature to about 700 K, at heating rates of 3 to 99 K/min. Fig. 2 shows typical DSC outputs 

obtained at different heating rates. Three exothermic peaks were observed. This complex behavior 

indicates that the transformation from the amorphous phase to the crystalline state is a multi-stage 

process. The three exothermic peaks shift to higher temperatures as the heating rate increases. This 

characteristic temperature shift can be used to extract the effective activation energies of the 

crystallization processes of the multi-step transformation from amorphous to crystalline phase 

using the widely used Kissinger method. More insight on the crystallization process can be 

obtained using different kinetic analysis involving model-fitting and model-free methodologies.  
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Fig. 2.  DSC outputs for the chalcogenide Cu18As30Te52 glass. Three crystallization  

peaks are observed at different heating rates. 

 

 

3.1 Effective activation energy of crystallization 

 

3.1.1 Kissinger’s method 

The crystallization kinetics of the three peaks can be analyzed using Kissinger equation. 

The effective activation energy of crystallization is obtained from the following relationship 

[21,22]: 

 

 
p

2

p .βln
RT

E
constT       (1) 

 

where Tp is the peak temperature and R is the gas constant. Therefore, a plot of ln(β/ 2
pT ) against 

1/Tp should be a straight line and the effective activation energy can be calculated from the slope. 

Fig. 3 shows the Kissinger plots for the three peaks. The experimental data for the three peaks can 

be fitted to Eq.1 for the entire range of the heating rates. The effective activation energies as 

obtained from the fit are given in Table 1. 

 

 
Fig. 3.  Kissinger plots for the three stages of crystallization. The straight lines are fits to Eq.1. 
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Table 1 Crystallization activation energies, E, for the three stages of crystallization process. 

 

Crystallization peak 
E (kJ/mol.) 

Kissinger’s eq. 

E (kJ/mol.) 

Isoconversional 
 

Peak 1 137 143  

Peak 2 224 223  

peak 3 140 141  

 

 

3.1.2 Model-free method 

The advanced isoconversional method introduced by Vyazovkin is a reliable model-free 

method widely used for the calculation of the effective activation energy of thermally activated 

reactions [23-24]. The effective activation energy can be determined at any particular value of  

by finding the value of E() which minimizes the following objective function: 

 

 

 1

,

,

n n
i j

i j i j i

I E T

I E T

 

   


 


 ,     (2) 

 

where n in Eq. 2 is the number of experiments carried out at different heating rates. These 

experiments are the extent of conversion as a function of temperature, (T), represented in Fig. 4, 

for peak 1.  

 
Fig. 4.  (T) dependence for the first crystallization peak (peak 1) at different heating rates. 

 

 

The temperature integral, I, was evaluated using an approximation suggested by Gorbachev [25]: 

𝐼 =

2

0
exp d exp

2

T E RT E
T

RT E RT RT

    
   

   
                                 (3) 

 

The variation of the effective activation energy with extent of conversion for the three 

peaks is shown in Fig. 5. No significant variation of E() with   is observed. The average values 

of the effective activation energies are presented in Table1 along with the values obtained using 

the Kissinger equation.  It is evident that both methods (Kissinger and isoconversional) led to 

similar values of the effective activation energies for the three peaks. 
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Fig. 5.  Dependence of the effective activation energy for crystallization,  

E(), on the extent of conversion, , for peaks 1,2 and 3 

 

 

3.2 The Avrami exponent (n) 

 

The Avrami exponent n plays a key role in the analysis of overall crystallization 

kinetics. For example, the variation of n with heating rates and/or extents of conversion can 

provide further insight into the crystallization process.  

 According to a theory developed by Vazquez et al [26], the heating rate dependence of n 

can be obtained using the following equation: 

 
1)1(2 ])1[()/( 

 EdtdRTn ii

PPP       (4) 

 

where the subscription p denotes the values of the quantities are those corresponding to the 

maximum crystallization rate. The impingement factor i can be calculated from [26]:  

 

1 − 𝛼𝑝 = (
𝛿𝑖

𝛿𝑖+1
)

𝛿𝑖
     (5) 

 

The impingement factor i can be calculated using the iteration method of Eq. 5 using the 

experimental values of p. The values of i for the three peaks are given in Table 2 for each 

heating rate. Therefore, the value of n can be found using the experimental values of the maximum 

transformation rate (d/dt)p, degree of conversion p and the corresponding peak temperature Tp, 

at each heating rate along with the average value of the effective activation energy, E, and the 

impingement factor i. The calculated values of n at different heating rates for the three stages of 

crystallization are given in Table 3.  
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Table 2  The heating rate dependence of the extent of conversion p corresponding to the 

maximum crystallization rate, the impingement factor i  and impingement exponent 
i
 for  

the three stages of crystallization. 

 

Crystallization Peak  
Quantity 

 (K/min) P  i  i  

Peak 1 

5.0 0.42348 0.50337 2.98661 

7.0 0.43750 0.56428 2.77217 

10 0.42832 0.52337 2.91068 

12 0.46476 0.71331 2.40192 

15 0.45217 0.63869 2.5657 

20 0.47999 0.82052 2.21873 

25 0.47714 0.79920 2.25185 

35 0.48505 0.86123 2.16112 

45 0.49858 0.95835 2.04346 

55 0.50129 1.01346 1.98672 

70 0.50451 1.04836 1.95387 

80 0.52148 1.26639 1.78964 

90 0.55113 1.86949 1.53490 

Average --- 0.47867  0.04 0.89077  0.4 2.27518  0.4 

Peak 2 

5.0 0.43550 0.55508 2.80154 

7.0 0.47526 0.78492 2.27401 

10 0.44761 0.61429 2.62790 

12 0.48473 0.85853 2.16478 

15 0.45007 0.62729 2.59415 

20 0.46145 0.69260 2.44382 

25 0.46409 0.70901 2.41043 

35 0.45309 0.64379 2.55329 

45 0.44902 0.62169 2.60852 

55 0.43651 0.55968 2.78673 

70 0.45828 0.67350 2.48478 

80 0.45752 0.66900 2.49477 

90 0.46508 0.71531 2.39800 

Average --- 0.45678  0.5 0.67113  0.1 2.51098  0.2 
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Peak 3 

5.0 0.42879 0.52537 2.90340 

7.0 0.45082 0.63123 2.58405 

10 0.49376 0.93834 2.06571 

12 0.51974 1.24089 1.80580 

15 0.54235 1.64906 1.60641 

20 0.49245 0.92614 2.07974 

25 0.43017 0.53138 2.88190 

35 0.45979 0.68250 2.46520 

45 0.43602 0.55748 2.79378 

55 0.43177 0.53828 2.85777 

70 0.49538 0.95385 2.04838 

80 0.49494 0.94954 2.05314 

90 0.49775 0.97705 2.02349 

Average --- 0.47490  0.04 0.85393  0.9 2.32067  0.4 

 

 
Table 3  The calculated values of n using Eq.4 at different heating rates for the three stages of 

crystallization. 

 (K/min) 

n() from Eq. (4) 

Crystallization Peaks 

Peak 1 Peak 2 Peak 3 

5.0 2.91  0.03 2.91  0.07 2.81  0.09 

7.0 2.87  0.02 2.46  0.06 2.66  0.09 

10 2.91  0.03 2.46  0.06 2.36  0.08 

12 2.93  0.03 2.37  0.06 2.51  0.09 

15 3.00  0.02 2.37  0.06 2.47  0.09 

20 2.91  0.03 2.55  0.06 2.38  0.08 

25 2.92  0.03 2.64  0.06 2.24  0.08 

35 2.86  0.02 2.44  0.06 2.25  0.08 

45 2.93  0.03 2.55  0.06 2.47  0.09 

55 2.92  0.03 2.34  0.05 2.68  0.09 

70 3.01  0.03 2.55  0.06 2.01  0.07 

80 3.03  0.03 2.30  0.05 2.07  0.07 

90 3.06  0.03 2.17  0.05 2.20  0.08 

Average 2.94  0.06 2.47  0.2 2.39  0.2 
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This shows that in each stage of crystallization the value of n does not change significantly 

with heating rate. This observation is also confirmed from the behavior of n at different extents of 

conversion of each peak. As shown by Lu et al [27], the variation of n with  can be found using 

the following expression: 

 

𝑛(𝛼) =
−𝑅𝜕𝑙𝑛[−𝑙𝑛(1 − 𝛼)]

𝐸(𝛼)𝜕(1 𝑇⁄ )
                                                                 (6) 

 

Figs. 6 a-c show such variation for the three peaks. It is evident from these figures that little 

variation of n with  is observed for peak 1. This indicates that while the stage of transformation 

represented by the first peak can be described by a single-step crystallization process, the second 

and third stages involve multistep crystallization process. An average value of n = 3, 2.5, and 2.4 

can be assigned to the three processes of peaks 1,2, and 3, respectively. These values are similar to 

the corresponding values obtained from the heating rate dependence of n (Table 3). 

 
Fig. 6.  The dependence of the Avrami exponent (n) on the degree of conversion  

() for the first (a), second (b) and third (c) crystallization peaks. 

 

 

3.3 Model-fitting analysis 

 

To describe the crystallization process more precisely, and to distinguish which one of the 

several kinetic models (listed in Table 4) can be used for the process, it will be useful to analyze 

the integral form of the reaction model,  g  , that is normally used to describe the kinetics of 

phase transformation in solids.  
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Table 4 Algebraic expressions of  f(α) and g(α) for the reaction models considered in the present work. 

 

No. Symbol Reaction model f(α) g(α) 

Power law    

1 P1 n = 1/4 4α
3/4

 α
1/4

 

2 P2 n = 1/3 3α
2/3

 α
1/3

 

3 P3 n = 1/2 2α
1/2

 α
1/2

 

4 P4 n = 3/2 2/3α
−1/2

 α
3/2

 

Phase-boundary controlled reaction   

5 R1 Contracting linear 1 α 

6 R2 Contracting area 2(1−α)
1/2

 [1−(1−α)
1/2

] 

7 R3 Contracting volume 3(1−α)
2/3

 [1−(1−α)
1/3

] 

Chemical reaction   

8 F1 First-order (Mampel) (1−α) −ln(1−α) 

9 F3/2 Three-halves order (1−α)
3/2

 2[(1−α)
−1/2

 −1] 

10 F2 Second-order (1−α)
2
 [(1−α)

−1
 −1] 

11 F3 Third-order (1−α)
3
 (1/2)[(1−α)

−2
 −1] 

Avrami-Erofeev   

12 A3/2 n = 1.5 (3/2)(1−α)[−ln(1−α)]
1/3

 [−ln(1−α)]
2/3

 

13 A2 n = 2 2(1−α)[−ln(1−α)]
1/2

 [−ln(1−α)]
1/2

 

14 A3 n = 3 3(1−α)[−ln(1−α)]
2/3

 [−ln(1−α)]
1/3

 

15 A4 n = 4 4(1−α)[−ln(1−α)]
3/4

 [−ln(1−α)]
1/4

 

Diffusion   

16 D1 One-dimensional diffusion 1/2α α
2
 

17 D2 Two-dimensional diffusion 1/[−ln(1−α)] [(1−α)ln(1−α) + α] 

18 D3 
Three-dimensional diffusion 

(Jander Eq.) 
3(1−α)

1/3
/2[(1−α

)−1/3
 −1] [1−(1−α)

1/3
]

2
 

19 D4 
Three-dimensional diffusion 

(Ginstling-Brounshtein) 
3/2[(1−α)

−1/3 
−1] (1−2α/3)−(1−α)

2/3
 

 

 

The assumption that the transformation rate of a solid-state reaction in isothermal 

conditions is the product of two functions, one dependent on the temperature, T, and the other 

dependent on the conversion fraction,  , can be generally described by the following expression: 

 

   
d

 
d

k T f
t


  ,      (7) 

where  k T  is the reaction rate constant,  f   is the reaction model, and   is the conversion 

fraction that represents the volume of the crystallized fraction. Under non-isothermal conditions 

with a constant heating rate of d dT t  , the kinetic equation combined with the Arrhenius 

approach to the temperature function of the reaction rate constant may be rewritten as: 

 

 
d

exp  
d

A E
f

T RT

  
   
  

,     (8) 

 

where  1sA   is the preexponential (frequency) factor,  1kJ molE   is the activation energy, 

and R is the universal gas constant. One can rearrange Eq. 8 and integrate by separation of 

variables, obtaining the  g   as: 
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𝑔(𝛼) = ∫
𝑑𝛼

𝑓(𝛼)
=

𝐴

𝛽

𝛼

0

∫ 𝑒𝑥𝑝 (−
𝐸

𝑅𝑇
)

𝑇

𝑇0

𝑑𝑇 

         =
𝐴𝐸

𝑅𝛽
∫

𝑒𝑥𝑝(−𝑥)

𝑥2

𝑥

0
𝑑𝑥 =

𝐴𝐸

𝑅𝛽
𝑝(𝑥) =

𝐴

𝛽
𝐼(𝐸, 𝑇)     (9) 

 

The temperature integral I(x) with x = E/RT does not have an analytical solution. It can be 

determined using the Gorbachev approximation given in Eq. 3. One of the widely used model-

fitting methods is the Coats-Redfern equation introduced by Coats and Redfern [28]. Utilizing the 

asymptotic series expansion for approximating the temperature integral I(x). the following 

expression was suggested: 

 

𝑙𝑛
𝑔(𝛼)

𝑇2
= 𝑙𝑛 (

𝐴𝑅

𝛽𝐸
[1 −

2𝑅𝑇∗

𝐸
]) −

𝐸

𝑅𝑇
                                                           (10) 

 

where T
*
 is the mean experimental temperature. Eq. 10 is a generalization of the Coats-Redfern 

equation which was originally derived assuming the first-order reaction model g(α) = −ln(1−α).  

Plotting the left-hand side of Eq. 10 versus 1/T gives the activation energy E and the frequency 

factor A from the slope and intercept, respectively. The values of E and A simultaneously obtained 

using all reaction models presented in Table 4 are used to test the validity of the compensation 

effect for the present glass. The compensation effect (or isokinetic effect) which is widely reported 

in many glassy systems is represented by the following relationship between E and A [29]: 

 

ln𝐴𝑚 = a + 𝑏𝐸𝑚                                                                (11) 

 

the subscript m refers to one of the possible reaction models f () assumed to described the 

process. Since the Arrehenius equation (𝑘 = 𝐴 exp(−𝐸/𝑅𝑇)) can be expressed as:  

 

ln𝐴 = ln𝑘𝑖𝑠𝑜 +
𝐸

𝑅𝑇𝑖𝑠𝑜
                                                                         (12) 

 

where kiso is the isokinetic rate constant and Tiso is the isokinetic temperature. Therefore, the 

isokinetic parameters a and b of Eq. 11 are equivalents to lnkiso and 1/RTiso. Fig 7 shows the plot of 

lnAm versus Em for all heating rates considered in this work.  

 

 
Fig. 7.  The isokinetic relationship (lnAm vs. Em) for the first crystallization  

peak obtained at different heating rates 
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A linear relationship is observed confirming the validity of Eq. 11 for the present sample. 

Once the parameters a and b have been evaluated, the E  values obtained from isoconversional 

analysis are substituted for E
m
 in Eq. 11 to estimate the corresponding lnA  values. Originally, 

this procedure was proposed by Vyazovkin and Lesnikovich [30] for estimating the pre-

exponential factor in the isoconversional method. The pre-exponential factor, A() vs.  is shown 

in Fig. 8 for the three peaks. It is obvious in this  

 

 
Fig. 8.  The variation of the preexponential factor A() with extent of conversion 

  at heating rate of 15 K/min. for the three peaks 

 

 

figure that the variation of A() as function of extent of conversion during the first peak (of the 

same order of magnitude (x10
15

) for all values of ) is much smaller as compared with the A() 

variation during the crystallization stages of peak 2 and peak 3. This observation agrees very well 

with the results of section 3.2 as discussed above.  

 It is also possible to determine the appropriate reaction model which describes the 

crystallization stages represented by the observed three peaks using the masterplots method [28]. 

By using  = 0.5 as a reference point, and according to Eq. 9, we can write 

  

g(0.5) =
𝐴𝐸

𝑅𝛽
𝑝(𝑥0.5)                (13) 

 

where x0.5 = E/RT0.5 and T0.5 the temperature corresponding to 50% conversion. Using Eqs. 9 and 

13, the following equation is obtained 

 
g(𝑥)

g(𝑥0.5)
=

𝑝(𝑥)

𝑝(𝑥0.5)
                (14) 

 

Therefore, plotting 𝑔(𝑥)

𝑔(𝑥0.5)
 versus  corresponds to theoretical masterplots of various g() 

functions. To draw the experimental masterplots of  𝑝(x)

𝑝(𝑥0.5)
 versus , the value of E and the 

temperature as a function of  of the process should be known in advance. Fig. 9a shows the 𝑔(𝑥)

𝑔(𝑥0.5)
  

reconstructed from the experimental data (as symbols) and the corresponding reaction model 

chosen for peak 1. It is evident from Fig. 9a that the reaction model chosen for peak 1 is the 

Avrami–Erofeev (A3.0) model for the whole range of . The excellent fit of the Avrami–Erofeev 

model with n = 3 to the experimental data of peak 1 is evident for all heating rates (5 – 90 K/min.) 

considered in this work. Similar analysis for the peaks 2 and 3 are shown in Figs 9b and 9c, 

respectively. In Fig. 9b, the experimental data follow very closely the theoretical masterplot 

corresponding to A3.0 reaction model for extent of conversion between 5 and 50% ( =0.05 to 
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0.5). For   0.5, the crystallization process is described by A2.0 and A2.5 reaction models. 

According to Fig. 9c, peak 3 process can be described by A3.0 reaction model for   0.5 and 

A2.0 reaction model for higher values . 

The values assigned to the Avrami exponent n obtained from the model-fitting analysis are 

very similar to the values obtained using model-free methods (see section 3.2 and Table 3). The 

above description of the kinetic behavior at different crystallization peaks can be further illustrated 

by evaluating the Avrami exponent (n) using the following equation [31], 

 
1

𝑛
=

𝜕ln [𝑔(𝛼)]

𝜕ln [− ln(1−𝛼)]
               (15) 

 

  

 
Fig. 9.  g()/g(0.5) vs.  plots for the crystallization processes of peak 1 (a), peak 2 (b) and  

peak 3 (c) determined at different heating rates. (Solid lines are calculated using A3.0, A2.0,  

and A2.5 reaction models). 

 

 

The dependence of the logarithmic form of the experimental reaction model ln[g()] on 

the theoretical ln[–ln(1-)] for the three crystallization peaks is shown in Fig. 10. The values of n 

can be determined from the slopes of the straight lines obtained from the least squares fitting 

according to Eq. 15. The fact that the kinetics of the peak 2 and peak 3 process involve multi-step 

processes is clearly indicated by a cross-over in the kinetic behavior at  = 0.50 with two different 

values of n. No such cross-over effect is observed for peak 1 process.  

It is evident that crystallization in Cu
18

As
30

Te
52

 system occurs in several steps as indicated 

by the multiple exothermic peaks in the DSC data (Fig.2). Similar observations were reported by 
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Wagner et al [12] in Cu25As30Te45 and Cu10As45Te45 glasses and Vazques et al [17] in Cu20As30Te50 

glass. The presence of two peaks in the exothermic thermal event was also reported by many 

authors [10, 15, 17, 20]. 

It had been suggested that [12,14] the structure of the glassy Cu-As-Te alloy can be 

described as a network of tetrahedral centered on copper atoms coexistence with other tetrahedral 

units whose centers are occupied by arsenic atoms. The tetrahedral units linked together by chains 

of tellurium atoms. Wagner et al [13] have proposed the following microstructural transformations 

corresponding to the three peaks: in the first stage of the process (peak 1), microcrystallites of 

As2Te3 are crystallized in an amorphous matrix. This is followed by a second stage (peak 2) in 

which Cu7Te5 is crystallized. Finally, in peak 3 stage, the volume fraction in the crystalline phase 

As2Te3 is increased. It is interesting to note the similar values of the effective activation energies 

for the crystallization stages (E) for the first and third stages of transformation. This is not 

surprising as the two stages involve nucleation and growth of As2Te3 phase.  

 

 
Fig. 10.   ln[g()] vs. ln[-ln(1-)] for the three crystallization peak. The experimental data  

(symbols) where determined at heating rate of 15 K/min. The values of n are determined  

from the least squares fitting using Eq. 15 

 

 
4. Conclusions 
 

The kinetics of crystallization of Cu
18

As
30

Te
52

 were investigated using DSC technique.  

Three exothermic peaks in the DSC output were observed in this system, indicating the presence 

of three distinct stages of crystallization. The kinetic parameters for the three stages were 

evaluated using model-free and model-fitting analysis. The insignificant variation of n and E with 

extent of conversion during the progress of first peak crystallization shows that this stage of 

transformation can be described by single-step mechanism of crystallization. The behavior of the 

three kinetic parameters for the peak 2 and peak 3 stages of crystallization provided evidence that 

multi-step crystallization processes are involved during these stages of transformation. Based on 

the model-fitting analysis of the present data, the reaction models, g(), describing the 

crystallization stages are  A3.0 for peak1 for the entire range of  and A3.0 reaction model for   

0.5 and A2.0 reaction model for higher values  for peak 2 and peak 3 stages.  
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