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This paper compares β-In2S3 nanoparticles synthesized via sonochemical method, using 
diverse indium salts and thioacetamide as a sulfur source in aqueous media. A direct 
immersion ultrasonic probe was used as an ultrasound source. It was found that the indium 
precursor plays an important role in the formation of In-S bond. X-ray diffraction, 
transmission electron microscopy and UV-vis spectroscopy were used to characterize the 
products. The choice of indium precursor was also found to be the important factor for the 
product rate of aggregation. 
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1. Introduction 
 
Researches in the area of nano-scale metal chalcogenides with 2:3 molar ratio of metal to 

chalcogenide in their unit cells are increasing due to their specific properties and therefore many 
potential technological applications. One of many important metal chalcogenides is indium sulfide 
(In2S3), a member of III-VI group. It has three polymorphic phases at atmospheric pressure: α-, β- 
and γ-In2S3 [1, 2]. The most promising phase is the room temperature stable tetragonal β-phase 
with a defect spinel structure and stability up to 1027 K. β-In2S3 is a mid-band gap (2.0-2.3 eV) n-
type semiconductor with special optical, electronic, optoelectronic and photoluminescence 
properties [3, 4]. Particular characteristics of materials are the cause for many technological 
applications, for example, in dry cells and solar cells, preparation of green and red phosphorus in 
the manufacture of picture tubes for colour televisions, in lithium ion rechargeable battery, etc. [5-
8]. Indium sulfide nanoparticles bioconjugates have also been employed in the medical area for 
cancer diagnosis [9]. 

Unique properties of material are highly dependent on their size and shape. Therefore, 
many different techniques were used for the synthesis of β-In2S3 nanoparticles, like organothermal 
synthesis [10], chemical bath deposition [11], hydrothermal synthesis [12, 13], solvothermal 
synthesis [14], ion-exchange and sulfurization method [15], in situ oxidization-sulfurization 
growth routh [16] and sonochemical synthesis [17-20]. 

In the presented work, β-In2S3 nanoparticles obtained by sonochemical method using 
diverse indium precursors and thioacetamide in aqueous medium are compared. The sonochemical 
method with the phenomenon of acoustic cavitation provides unique reaction conditions in liquid 
medium [21] so the products are generally nanosized. To the best of our knowledge, there have not 
yet been done a comparison between sonochemically synthesized β-In2S3 nanoparticles with 
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diverse indium precursors. In addition, there seem to be no reports about using indium nitrate as 
In-precursor in sonochemical preparation of β-In2S3. X-ray diffraction (XRD), transmission 
electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-vis) were used to 
characterize the obtained products. 

 
 
2. Experimental  
 
Indium nitrate hydrate (In(NO3)3 · xH2O), indium trichloride (InCl3), indium sulfate 

(In2(SO4)3) and indium acetate (In(CH3COO)3) were used as indium precursors and thioacetamide 
(C2H5NS) as sulfur source, respectively. All reagents were analytical graded, and used without 
further purification. In a typical synthesis process an equimolar ratio of indium salt and 
thioacetamide was dissolved in aqueous medium. Firstly, 2.5 mmol of indium salt was dissolved in 
25 mL of distilled water. In another baker the 25 mL aqueous solution of 2.5 mmol of 
thioacetamide (= 0.188 g) was prepared and added to the previously prepared solution of indium 
salt. The mixture was stirred until a homogeneous solution was obtained. The as-prepared samples 
were sonicated with high-intensity ultrasonic probe (Sonics & Materials, VCX 750, 20 kHz, 70 % 
amplitude, Ti direct immersion horn) for 1h at atmospheric conditions. During ultrasonic 
irradiation, the temperature of the sample rose to around 360 K. After being cooled down to room 
temperature by natural cooling, the obtained precipitation was centrifuged at 5000 RPM, washed 
twice with distilled water and once with absolute ethanol, and dried in air. In the case of using 
indium salts of strong acids, the formed precipitates are orange-colored, while a gray product was 
obtained when using indium acetate.  

The as-obtained samples were characterized with X-ray powder diffraction (XRD; AXS 
Bruker/Siemens, D5005) using CuKα radiation at 293 K. The XRD patterns were registered in the 
10 - 70° range in steps of 0,036°. The morphology and particle size of the products were 
investigated by transmission electron microscopy (TEM; JEOL 2100, Cu –grid, 200 kV). The 
crystalline size was also calculated using Scherrer equation. UV-vis absorption spectra of β-In2S3 
nanoparticles dispersed in ethanol were measured on a Varian Cary 50 UV/Vis spectrophotometer.  

 
 
3. Results and discussion 
 
Fig. 1a shows the XRD patterns for the samples prepared from diverse indium salts of 

strong acids and thioacetamide via sonication for 1h. There are visible differences among the 
diffraction peaks in the patterns. The peak at 2θ = 43.5º (1015) is clearly visible in the sample 
synthesized with In(NO3)3, indicated in the sample were InCl3 was used as In-source, while 
essentially unobservable in the sample synthesized using In2(SO4)3. Peaks (103) and (116) are 
visible only in the diffraction pattern (a). Nevertheless, all prominent diffraction peaks correspond 
to the standard body centered tetragonal form of β-In2S3 (JCPDS card No. 25-0390) and no 
obvious peaks for other impurities such as In2O3 and S were observed. 
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Fig. 1a. XRD patterns of the products prepared with (a) In(NO3)3 · xH2O, (b) InCl3 and (c) In2(SO4)3 
  

 

The possible reason for the differences in the existence and the intensity of diffraction 
peaks between samples is the time of ultrasonic irradiation of the particles, i.e. ultrasonic 
irradiation between the beginning of the particles formation (visible in the change of colour of the 
sample) and the finishing time of sonication. For the sample where In(NO3)3 was used as In-
source, this time was approx. 45 min, while it was only 25 min for the sample with In2(SO4)3.  

The crystallite sizes of the samples were calculated from the peaks at 2θ = 33.2° and 47.7° 
using Scherrer equation ܦ ൌ ߣ0.94 ⁄ߠݏܿߚ , where D is a diameter of the crystallites, λ is x-ray 
wavelength (1.542 Å), β is the line broadening at half the maximum intensity (FWHM) and θ is 
the Bragg angle. The crystallite size of the samples varies between 12 and 14 nm. The smallest 
crystallite size was estimated for nanoparticles synthesized using InCl3 as indium source. 

 
 
 

Fig. 1b. XRD patterns of the product prepared with In(CH3COO)3 before  
(i) and after (ii) heating to 773 K 

 

The diffraction pattern (i) in Fig. 1b for the product derived from indium acetate and 
thioacetamide revealed a product which was hard to characterize. Therefore, the sample was 
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behaviour at lower wavelengths, with very broad absorptions at 525 nm (2.4 eV) and 445 nm (2.8 
eV), respectively.  The band gap value for sample (B) calculated from the absorption edge using 
the extrapolation method is 2.5 eV.  The band gap values reported in literature for bulk In2S3 vary 
between 2.0 and 2.2 eV [23-25], suggesting that although the size of as-prepared samples is 
significantly above the Bohr radius of the exciton for In2S3, which is about 34 nm [26], quantum 
confinement takes place inside the primary nanoflakes with a thickness of 5 nm. 
 

 
Fig. 3. UV - Vis spectra of β-In2S3 nanoparticles prepared from  

(A) In(NO3)3 · xH2O, (B) InCl3 and (C) In2(SO4)3 
 
 

4. Conclusions 
 
β-In2S3 nanoparticles were successfully sonochemically synthesized in aqueous medium 

using diverse indium salts of strong acids. The sonochemical method is simple, fast, economical 
and environmentally benign. In our case, the particles size and shape of as-synthesized products at 
the same conditions do not differ significantly, while they differ according to the rate of 
aggregation. This finding is important for further research, particularly in terms of stabilizing and 
further processing of particles. 
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