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CONNECTION BETWEEN Co/MCM-48 CATALYST SYNTHESIS CONDITIONS 

AND PERFORMANCES IN THE STEAM REFORMING PROCESS  
THROUGH ARTIFICIAL NEURAL NETWORK 
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Sohn et al. [6] realized an overview of the research conducted on ethanol steam reforming 
using the Co/CeO2 catalyst. The role of the support oxygen mobility and storage capacity of the 
Co/CeO2 catalyst and how the addition of Co changes the oxygen vacanciesin the catalyst structure 
was discussed. They investigated how the synthesis parameters such as synthesis method, 
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Artificial neural network was used to decide an optimum Co/MCM-48 catalyst to obtain 
hydrogen through steam reforming of ethanol establishing the connection between catalyst 
synthesis conditions, catalyst characteristics and catalyst performances. Artificial neural 
network could predict the performances of Co/MCM-48 catalysts in terms of ethanol 
conversion and hydrogen yield. The optimal hydrogen yield was 61.77% and ethanol 
conversion 85.31%. The optimal catalyst was the one prepared for a stirring synthesis time 
of 15 h and 5600C calcinations temperature which involves a higher thermal stability. 
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1. Introduction 
 
Hydrogen continues to be an important energy carrier for the future due to is low impact 

on the environment and its potential as a fuel for more efficient energy conversion. 
In this way fuel cell oriented hydrogen production from ethanol reforming has attracted 

great interest. Ethanol especially can be easily produced in renewable form, from several biomass 
sources, and does not contribute to the global warming, releasing the same amount of carbon 
dioxide as that absorbed by the biomass. 

Production of hydrogen by steam reforming of ethanol has been investigated over time by 
using different catalytic systems. 

Kumar et al. [1] suggested that the nature of metal and support contributes the selection of 
path for hydrogen generation. The highly acidic nature of the support aided dehydration of ethanol 
whereas basic nature or addition of promoters inhibited dehydration and deactivation of catalysts 
by coke deposition. 

Batista et al. [2] studied steam reforming of ethanol at 4000C on Co/Al2O3 and 
Co/SiO2catalysts with a cobalt content of 8 and 18% wt. respectively. The catalysts showed 
average conversion higher than 70% for the steam reforming of ethanol. The increase of ethanol 
conversion and reduction of the amount of liquid products were observed for the catalysts with 
higher cobalt contents. 

Profeti et al. [3] investigated the performances of Co/Al2O3 promoted with small amounts 
noble metals (Pt, Pd, Ru, Ir) for steam reforming of ethanol. The better catalytic performances for 
ethanol steam reforming at 4000C was obtained for the Co-Ru/Al2O3 catalyst, which presented an 
effluent gaseous mixture with the highest H2 selectivity and reasonable low CO formation.Metal-
supported catalysts have exhibited catalytic ability in steam reforming process. Overall supported 
cobalt catalysts exhibited excellent activity toward oxidation [4,5]. 
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impregnation medium, choice of cobalt precursor, support morphology could affect the catalytic 
activity. 

The synthesis of a new family of mesoporous molecular sieves with regular and constant 
pore diameter from 2 to 10 nm designated as M41S was reported in 1992 by the scientists at Mobil 
Oil Corporation. For all of that MCM-41 is the most utilizable silica in different type of 
applications [7-9] followed by SBA-15 in important processes like this studied ethanol steam 
reforming [10]. MCM-48 silica has been found to possess a bi continuous structure attractive for 
applications in adsorption, catalysis, chromatography, gas separation [11]. The use of new 
promoter species, such as Mn oxide with Co as the main catalytic ingredient on MCM-48 support 
was attempted for high hydrogen generation in ethanol steam reforming. 

Lee et al.[12] examined hydrogen production by ethanol steam reforming over Mn/Co-Si-
MCM-48 catalyst. The authors concluded that the catalytic performance varied according to the 
loaded metal oxide species and the presence or absence of Co ions in the Si-MCM-48 framework. 

Su et al. [13] studied the hydrogen production from ethanol steam reforming over Ni-Zr 
loaded MCM-48. These Ni-Zr/MCM-48 catalysts exhibited significantly superior performances 
than Ni/MCM-48 catalyst, which were maintained for up to 60 h. 

Despite of it all, even thought Co/MCM-48 catalyst seems to be active catalyst, the 
connection between catalyst synthesis conditions, catalyst characteristics and performance in the 
steam reforming of ethanol for hydrogen production have not been certain explained. In our 
previous work [14] we attempted to evaluate the optimum synthesis conditions of MCM-48 
support for this kind of process. 

Additionally, it cannot be ensured that these optimal synthesis conditions will be reached. 
However is essential to establish a method, which can take into account all catalyst properties in 
order to determine the optimum conditions. 

ANN (artificial neural network) can be an important instrument for applications in process 
engineering. The application of ANN in catalysis and in chemical engineering has been reported in 
the literature. 

Huang et al. [15]use the artificial neural network to simulate the relations between 
components of catalyst and aspects of catalytic performance, which include C2 selectivity and 
conversion of methane. 

Hou et al. [16] applied ANN to design a VSbWSn (P, K, Cr, Mo)/SiAl catalyst for 
acrylonitrile synthesis via propane. The conversion of propane and selectivity of acrylonitrile can 
be calculated as functions of the catalyst components by the ANN. 

Watanabe et al. [17] use ANN to develop a catalyst for methanol synthesis from syngas. 
After training, the ANN can map the catalyst activity as function of catalyst composition and 
parameters for catalyst preparation. 

 
 
2. Application of ANN in catalyst design  
 
2.1. General details about the artificial neural network (ANN) 
The artificial neural network is the tool that will be used in this paper to determine the 

connections between the properties and the performances of the catalyst, more precisely, to 
estimate the catalyst performances, knowing its characteristic properties’ values. The obtained 
estimations will be use to calculate further the optimum values of the catalysts performances and, 
subsequently, to determine the catalyst properties that will lead to obtain the computed optimum 
performance.  

The ANN is a computer algorithm that was inspired by the real, biological neural 
networks, especially the brain. Because it is a computer algorithm, it has input and output data. 
The input data is processed by a number of distinct units, simple abstractions, called neurons. 

The neurons from the ANN are divided into three layers: the input layer, one or more 
hidden layers and the output layer. The input layer, which has a number of neurons equal to the 
number of inputs, has the purpose of receiving the input data and passing it to the neurons from the 
hidden layer. The purpose of the hidden layer is to receive the input data and to process them. 
After the process is complete, the results are passed to the output layers. The programmer chooses 
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the number layers and the number of neurons from the hidden layer. A larger number of neurons 
helps the neural network to solve more complex and/or large problems, but setting a high number 
of neurons for a specific problem,will produce unwanted effects. The same thing goes for the 
number of layers, with the mention that, in most cases, one layer of neurons is sufficient. The 
output layer’s purpose is to receive the results of the hidden layer’s computations and to store 
them. The number of neurons of the output layer is equal to the number of outputs. 

To be able to compute the results, each of the neurons needs four parameters: an input (p), 
a weight (w), a bias (b) and a transfer function (f). The input is multiplied by the weight. The 
result of this multiplication is sent to a part of the neuron called summer, along with the bias. The 
result of this summation becomes the argument of the transfer function. The result of the transfer 
function is the output of the neuron, as it is shown in equation (1) [18]: 

 
a=f(w)      (1) 

 
In equation (1), a represents the output of the neuron.  
The value of the output depends on the chosen transfer function. Typically, the transfer 

function is chosen by the programmer, so the value of the weight and the bias are adjusted 
according to some rules, so as the neuron input/output relationship meets some specific goal. 
These rules are called learning rules[18]. 

A very important property of the artificial neural network is its learning capacity. The 
learning process modifies the values of the weight the bias, according to some learning rules, 
known also as training algorithms. The purpose of the learning rule is to train the network to 
perform some task (estimation of some catalyst properties, in this case). There are three types of 
learning: supervised learning, unsupervised learning and graded learning.  

Supervised learning is the most common type of learning used nowadays. In supervised 
learning, the learning rules are presented to a series of input-output pairs, which represent the 
correct behavior of the ANN. All these pairs form the training database and have the general 
pattern expressed below [16]: 

 
(𝑝𝑝1, 𝑡𝑡1), (𝑝𝑝2, 𝑡𝑡2), … (𝑝𝑝𝑛𝑛 , 𝑡𝑡𝑛𝑛)     (2) 

 
In the pattern (2), p is the network input and t is the corresponding correct output (known 

also as target output). In supervised learning, the weights and biases are adjusting so as the 
obtained outputs are as close as possible to the target outputs, for a given input. The training 
process is iterative. Like any other iterative process, a stop condition is needed, otherwise the 
ANN training would continue infinitely. This stop condition is called performance index. There 
are many performance indices, one of the most used being the mean squared error, where the error 
is defined as the difference between the target output and the computed output, for the same input.  

One of the most used training algorithms is the Liebenberg-Marquardt algorithm. This 
algorithm is a version of the Newton’s method and it is designed for neural network training for 
which the performance index is the mean squared error, which must be minimized. The training 
process continues as long as the computed mean squared error is higher than a preset value 
[18,19]. 

 
2.2 Multilayer feed-forward ANN configuration 
The artificial neural network that is used in performance estimations is a multi-layer, feed-

forward artificial neural network that was developed by using MATLAB software, version 
R2015a,using the “Neural Net Fitting” application. This application is a wizard which simplifies a 
lot the creation and the customization of the artificial neural network. In the end, the user has a 
fully functional network, which can be usedright away and/or save it for later, as a script file.  

The artificial neural network that will be used has the following properties: 
• It has one hidden layer, with 10 neurons; 
• The training algorithm is Levenberg-Marquardt (which means that the 

performance index is the mean squared error); 
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• The training data are divided randomly, as follows: 70% of the data are marked as 
training data and the rest of 30% are distributed, evenly, between validation and testing data; 

The training process is very important, because the quality of the estimations depends on 
the quality of the data from the training database. 

 
 
3. Experimental 
 
3.1 Synthesis of catalysts 
Three preparations stirring time were uses for catalyst synthesis: 2h, 9h and 15h. The 

preparation procedures used for these synthesis methods are described in detail elsewhere [20]. 
 
3.2 Catalysts characterization 
The powder X-ray diffraction (XRD) patterns of samples were recorded on a Bruker D8 

Advance diffractometer with CuKα radiation in the 2θ range of 1-100 at scanning rate of 10/min. 
Specific surface area and pore size were measured using an automatic QuantachromeAutosorb Gas 
Sorption system. The morphology of the sample was examined using a scanning electron 
microscope Quanta. 

 
3.3 Catalytic activity tests 
The steam reforming of ethanol was carried out under atmospheric pressure in a fixed bed 

reactor. The catalyst was loaded between two layers of glass beads inside the reactor and the 
reaction temperature was measured by a thermocouple and controlled by a digital temperature 
controller. Ethanol was delivered to the reactor chamber by means of a HPLC pump controlled at 
the desired flow rates. Prior to reaction, the catalyst was reduced in situ by hydrogen at 5500C for 
6h. The products were analyzed on-line using a Varian gas chromatography equipped with 
capillary columns Pora Plot and a TCD detector. Helium was used as carrier gas. The reductions 
were carried out at atmospheric pressure and reaction temperature of 4000C. The product mixture 
during reaction was passed through a condenser to separate the gaseous and liquid products for 
analysis. 
The catalysts were evaluated for their performance in the reforming of ethanol. The criteria used 
were ethanol conversion and hydrogen yield. 
 
 

𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 −𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖
× 100                                                    (3) 
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where:  
XEtOH - ethanol conversion  
nEtOHin – moles of ethanol in of reactor 
nEtOHout – moles of ethanol out of reactor 
ηH2- yield of hydrogen  
gH2- mass of hydrogen 
ggas - mass of gas produced in the experiments, g  
gmpreal - real raw mass, g  
% H2 –weight percent of H2 obtained by chromatographic analysis of gas fraction (produced in reactor) 
 

3.4. Linear –interpolation methods  
For process development, the study of optimization of parameters may not always be 

likely because of limited experimental results. Linear interpolation is a method of curve fitting 
using linear polynomials to construct new results points within the range of a discrete set a known 
data points. 
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In our case the pore volume, pore size and BET surface area which involves the part of 
characterization of the catalyst, were corresponding to outputs section. The synthesis time and the 
calcinations temperature during support preparation play the role of inputs section. 
Hydrogen production, the ethanol conversion and hydrogen yield formed the output section. 
 

Table 1. Original experimental results used for linear interpolation 
 
 Results 1 Results 2 Results 3 

Catalyst 
name 

Stirring 
time 

Calcinations 
temperature 

BET 
surface 

Pore 
size 

Pore 
volume 

Ethanol 
conversion 

H2 yield 

MC1 2h 5200C 920.20 2.42 0.61 30.0 18.0 
MC2 2h 5600C 946.60 2.58 0.61 61.0 35.0 
MC3 2h 6000C 961.00 2.50 0.59 61.5 35.4 
MC4 9h 5200C 940.11 2.70 0.62 41.0 34.0 
MC5 9h 5600C 958.71 2.61 0.62 73.3 50.1 
MC6 9h 6000C 1002.10 2.54 0.61 80.0 52.0 
MC7 15h 5200C 1300.00 2.88 0.69 41.0 52.3 
MC8 15h 5600C 1028.95 2.68 0.69 86.3 62.0 
MC9 15h 6000C 1000.40 2.52 0.60 82.0 60.0 
 

The results 1, 2 and 3 from table 1 are the original experimental data. These results are not 
enough to create the neural network in order to find the connection between results. Two ways 
were adapted in this case: the linear interpolation and drawing a line of best fit thought the 
experimental results set. 

 
 
4. Results and discussions  
 
4.1 Neural network application for the characteristics of Co/MCM-48 catalyst 
The developed artificial neural network was used to estimate the catalyst properties in two 

distinct cases: 
• The input data are calcination temperature and synthesis stirring time and the 

output data are BET surface, pore size and pore volume; 
• The input data are calcination temperature and synthesis stirring time and the 

output data are ethanol conversion and hydrogen yield. 
In both cases the same neural network is used, the only thing that is changed being the 

training databases. To ease the understanding of the estimation and optimization processes, the 
neural networks are treated as distinct, thus named Neural Network 1 (NN1) and Neural Network 2 
(NN2). 

A schematic approach of the two estimation processes is presented in Fig. 1. 
 

 
 

Fig. 1. The input and the output data of the two types of estimations made by the ANN 
Neural network one NN-1 

 
 
For this neural network, the training database has two inputs and three outputs, which 

means that the input layer has two neurons and the output layer has three. The structure of this 
neural network is presented in figure 2. 
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Fig. 2. The structure of NN1 

 
 

In figure 2 the basic elements of the neurons can be seen: the weight, the bias (marked 
with w and b respectively), the summer (marked with a plus sign) and the transfer function that is 
being used: the hyperbolic tangent sigmoid for the hidden layer and the linear function for the 
output layer.  

The hyperbolic tangent sigmoid transfer function (implemented in MATLAB as the tansig 
function) has the following expression [16]: 
 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) = 2
1+𝑒𝑒−2𝑛𝑛 + 1      (5) 

 
The linear function (implemented in MATLAB as the purelin function) has the following 

expression [21]: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) = 𝑥𝑥       (6) 
 

The choice of the linear function as transfer function for the output layer is obvious: the 
alteration of the result, in this stage, is not desired. The hyperbolic tangent sigmoid transfer 
function that is used in the hidden layer is the default transfer function for the Neural Net Fitting 
Application, but it can be modified by editing the generated script. 

Because of the large number of data from the training database and because a large 
proportion of the training data was obtained by linear interpolation, the data from the training 
database are highly correlated, which means that the training efficiency is high. This fact is proved 
by the error histogram, which shows that the majority of the errors, defined as the difference 
between the target data and the output data, are very small. The error histogram is presented in 
figure 3. 
 

 
Fig. 3. Error histogram of NN1 training 

 
 

Another criterion in evaluating the training efficiency is the data regression analysis. The 
result of this analysis is represented as a number, between 0 and 1, noted with R. The closest the 
value of R is from 1, the more efficient the training was. The results of the regression analysis are 
presented in figure 4. Because the regression analysis and the error histogram evaluate the same 
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process, the neural network training, the presented results will always be the same, the only 
difference being the presentation form. 
 

      
 

      
 

Fig. 4. Regression analysis of NN1 training 
 
 

Neural network two NN-2 
NN2 is fairly similar to NN1, the only difference being that another training database is 

being used, because the outputs are different. In NN2, the inputs are the same to NN1, but the 
outputs are the ethanol conversion and the hydrogen yield.  

Because NN2 has two outputs, it means that the input layer has two neurons, the middle 
layer has ten neurons and the output layer has two neurons as well. The transfer functions for both 
hidden and output layer are the same as NN1. 

The structure of NN2 is presented in Fig. 5. 
 

 
 

Fig. 5. The structure of NN2 
 

The training process of NN2 is similar to NN1. The obtained error histogram is presented 
in Fig. 6. 
 



490 
 

 
 

Fig. 6. Error histogram of NN2 training 
 
 

The results of the regression analysis of the training data are presented in figure 7. 
 

 
 

Fig. 7. Regression analysis of NN2 training 
 
 

The results presented in figures 6 and 7 are similar to the results from figures 3 and 4. 
Also, the results from figures 6 and 7 are not surprising; because of the way the training data were 
obtained. 
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4.2. Hydrogen production with neural networks 
4.2.1 Using the neural networks to obtain optimal operation and catalyst conditions  
for maximum ethanol conversion or hydrogen yield 
The neural network trained with the two distinct training databases are used to determine 

the optimal catalyst conditions so as to obtain maximum ethanol conversion or hydrogen yield.The 
next step is to use the obtained results so as to determine the optimum performance for the studied 
catalyst. Precisely, the goal is to determine the maximum ethanol conversion and the maximum 
hydrogen yield. Once those are determined, the next step is to find out the stirring time and 
calcination temperature needed to obtain the maximum value of the properties.  

The optimization procedure is described in figure 8. This procedure involves setting up the 
initial values for the stirring time and for the calcination temperature, then using the ANN to 
estimate the ethanol conversion and the maximum hydrogen yield. After each estimation, the 
values of the two properties are increased following the some rules. The estimations stop when 
both catalyst properties reached their maximum value. 

The notations used in figure 8 are as follows: 
• ST – stirring time; 
• CT – calcination temperature; 
• Step – the amount with which CT increases after every iteration; 
• i – counter; 
• Res – the result of the ANN estimation (abbreviation from Result); 
• EC/ ECM – ethanol conversion/ maximum ethanol conversion; 
• H2Y/ H2YM – hydrogen (H2) yield/ maximum hydrogen yield; 
• OSTE/ OSTH – optimum stirring time for ethanol production/ for H2 yield; 
• OCTE/ OCTH – optimum calcination temperature for ethanol production/ for H2 yield; 

As it can be seen in figure 8, the entire optimization process is iterative, simple and 
straightforward. It involves a number of estimations, using the artificial neural network, for certain 
values of the stirring time and calcination temperatures. Thus, the stirring times take the values of 
2, 9 and 15, successively, and the calcination temperatures vary from 520 to 600, with the step of 
10. The chosen value for the step was arbitrary, so it can be modified. 

Because the artificial neural network estimates two outputs at the same time, they are 
represented as an array of two numbers. The first number represents the ethanol conversion and 
the second number is the hydrogen yield. This explains theRes [1]andRes [2]notations.Res [1] 
signifies the first element of the array and, obviously, Res [2] signifies the second element. 

Another important thing needs to be mentioned: it is not possible to determine both 
optimum values for a catalyst at the same time. So, the interpretation of the given results becomes 
a problem of choice: if, at a given time, the optimum ethanol conversion is desired, then one type 
of catalyst will be produced; if the optimum hydrogen yield is desired, then another type of 
catalyst will be produced. 

By running the algorithm presented in figure 8, we obtain the results from table 2. 
 
 

Table 2. Optimum values for ethanol conversion and hydrogen yield 
 

Property Optimum value Catalyst properties for the optimum value 
Stirring time (h) Calcination temp. (°C) 

Ethanol conversion (%) 85.31 15 570 
Hydrogen yield (%) 61.77 15 560 

 
 

From table 2, it can be seen that the optimum values for the desired properties can be 
obtained when the stirring time used for the catalysts synthesis is 15 hand the calcination 
temperature is around 560–570°C, depending on the desired property. This result is expected, 
because the maximum values for these properties, presented in table 1, are close to the optimum 
values at 15 h stirring time, the calcination temperature being in the 560-600°C range. 
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Fig. 8. The utilized optimization algorithm 
 
 

4.2.2 Verification with ANN 
There are many ways to scrutinize the accuracy of ANN prediction. In this paper, two 

practical ways will be considered. The first way is to interpret the training database regression 
analysis (figures 4 and 7) or the error histograms (figures 3 and 6) and draw the appropriate 
conclusions. The second way is to use the artificial neural network to predict the desired 
properties, using input data for which the outputs are already known. Then, the predicted and the 
known output values are compared.  

To determine the artificial neural network estimation accuracy using the second method, 
the data presented in table 1 were used. For each of the inputs presented in that table, the values for 
the 5 properties were estimated then compared to the determined valued from table 1. Because the 
data from the training database were strongly correlated, the authors believe that only one 
estimation is enough to reflect the estimation capacity of the neural network, if the data were less 
strongly correlated, more estimations for the same input would be needed, the value taken into 
account being the average of the estimations. 

In table 3, the determined and the estimated values for BET surface, pore size and pore 
volume are presented. 
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Table 3. Estimated and determined values for BET surface pore size and pore volume 
 

 Determined values Estimated values 
Stirring 

time 
Calcinations 
temperature 

BET 
surface 

Pore 
size 

Pore 
volume 

BET 
surface 

Pore 
size 

Pore 
volume 

2h 5200C 920.2 2.42 0.61 920.3 2.48 0.61 
2h 5600C 946.6 2.58 0.61 946.55 2.56 0.60 
2h 6000C 961.0 2.50 0.59 961.24 2.54 0.60 
9h 5200C 940.11 2.70 0.62 940.07 2.66 0.62 
9h 5600C 958.71 2.61 0.62 959.26 2.62 0.62 
9h 6000C 1002.1 2.54 0.61 1000.1 2.54 0.60 

15h 5200C 1300.0 2.88 0.69 1299.3 2.84 0.71 
15h 5600C 1028.95 2.68 0.69 1032.2 2.68 0.66 
15h 6000C 1000.4 2.52 0.60 1000.9 2.56 0.61 

 
 

From table 3 it can be noticed that the difference between the determined and the 
estimated values, most of the times the difference is under 1. This is another evidence that the 
artificial neural network is efficiently trained, so its estimations are accurate. 

In table 4, the same estimations are made, but for the ethanol conversion and hydrogen 
yield. 
 

Table 4. Estimated and determined values for ethanol conversion and hydrogen yield 
 

 Determined values Estimated values 
Stirring 

time 
Calcination 

temperatures 
Ethanol 

conversion 
H2 yield Ethanol 

conversion 

H2 
yield 

2h 5200C 30.0 18.0 29.92 18.00 
2h 5600C 61.0 35.0 60.42 34.53 
2h 6000C 61.5 35.4 61.42 35.32 
9h 5200C 41.0 34.0 41.18 34.01 
9h 5600C 73.3 50.1 72.88 49.83 
9h 6000C 80.0 52.0 79.84 52.15 

15h 5200C 41.0 52.3 41.52 52.22 
15h 5600C 86.3 62.0 85.16 61.93 
15h 6000C 82.0 60.0 82.18 60.17 

 
 

Similar to table 3, the estimated and the determined values from table 4 are very close to 
each other. Again, this proves that the training was efficient and the estimations are accurate.  

 
 
5. Conclusions 
 
ANN has been used to design an optimum Co/MCM-48 for the production of hydrogen by 

steam reforming of ethanol. ANN could predict hydrogen production performance of various 
preparation type conditions in terms of ethanol conversion and hydrogen yield. Specifically, on 
catalyst design, ANN was used to determine the optimum catalyst conditions for obtaining good 
hydrogen production. The optimal hydrogen yield was 61.77% and the ethanol conversion85.31%. 
The optimal catalyst was the one synthesized at stirring time of 15 h and calcination temperatures 
of 560–5700C. 
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