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Megazol is a highly active compound against Trypanosoma cruzi, and has become a core 
structure for the design of new trypanocidal agent. Recently, a new potent trypanocide 
agent Brazilizone A (a derivatives of megazol), was identified which presents an IC50 two 
fold more potent than the prototype megazol. This result has encouraged us to perform 
QSAR study on structurally-related 1,3,4-thiadiazole-2-arylhydrazone derivatives 
(Brazilizones), in order to get a better understanding of their structural features and 
antiprotozoal activity. The k-Nearest Neighbor Molecular Field Analysis (kNN-MFA), a 
three dimensional quantitative structure activity relationship (3D-QSAR) method has been 
used in the present case to study the correlation between the molecular properties and the 
Trypanosoma cruzi inhibitory activities on a series of 1,3,4-thiadiazole-2-arylhydrazone 
derivatives. kNN-MFA calculations for both electrostatic and steric field were carried out. 
The master grid maps derived from the best model has been used to display the 
contribution of electrostatic potential and steric field. The statistical results showed 
significant correlation coefficient r2 (q2) of 0.9455, r2 for external test set (pred_r2) 0.8087, 
coefficient of correlation of predicted data set (pred_r2se) of 0.5873, degree of freedom 20 
and k nearest neighbor of 2.  Therefore, this study not only casts light on binding 
mechanism between Trypanosoma cruzi and its inhibitors, but also provides new hints for 
the design of antitrypanosomal agents with observable structural diversity. 
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1. Introduction 
 
Chagas’ disease is one of the most important parasitic infections of Latin America, with 

over 17 million people infected, mainly in endemic areas, and at least 120 million people at risk. It 
is caused by the hemoflagellate protozoan Trypanosoma cruzi, which infected humans through the 
bite of a triatomine insect vector or blood transfusion. The infective trypomastigote form of the 
parasite penetrates into mammalian cells and undergoes differentiation into proliferative 
amastigotes. Rupture of these cells leads to liberation of the parasites and perpetuation of the 
infection, which after several years can lead to the chronic forms o the disease, cardiac and/or 
digestive1. Currently, this pathology is treated with nitro heterocyclic agents such as nifurtimox 
and benzenidazole. These two drugs are effective against the circulating form of the parasite 
(trypomastigotes) during the acute phase of the disease, but not during the chronic stage. 
Additionally, they produce serious adverse effects including mutagenesis. Megazol is a 5-
nitroimidazole derivative with antibacterial and antiparasitic activity particularly against 
trypanosomes2. For this reason, megazol was considered as an alternative lead-compound for the 
treatment of the Chagas’ disease. In spite of its impressive antiprotozoal profile, which was 
associated with its interference with oxygen metabolism as well as its role as thiol scavenger for 
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trypanothione, cofactor for trypanothione reductase, megazol development was discontinued due 
to the toxicity and mutagenicity induced by its use in animals. Try to circumvent this undesired 
profile several megazol analogues were synthesized. However, none of these derivatives have 
showed to be more potent than the prototype. 

Considering this panorama and trying to circumvent this undesirable profile, several 
megazol analogues belonging to a new class of 1,3,4-thiadiazole-2-arylhydrazone derivatives have 
been designed and synthesized as attractive antichagasic drug candidates. Due to the hypothesis 
that the introduction of a radical scavenger subunit linked to the heterocyclic scaffold of megazol 
could modulate the production of toxic nitro anion radical species, they could potentially avoid 
mutagenic properties3. 

One could not, however, confirm that the compounds designed would always possess 
good inhibitory activity to Trypanosoma cruzi, while experimental assessments of inhibitory 
activity of these compounds are time-consuming and expensive. Consequently, it is of interest to 
develop a prediction method for biological activities before the synthesis4. Quantitative structure-
activity relationship (QSAR) searches information relating chemical structure to biological and 
other activities by developing a QSAR model. Using such an approach one could predict the 
activities of newly designed compounds before a decision is being made whether these compounds 
should be really synthesized and tested5. 

Many different approaches to QSAR have been developed over the years. The rapid 
increase in three-dimensional structural information (3D) of bioorganic molecules, coupled with 
the development of fast methods for 3D structure alignment (e.g. active analogue approach), has 
led to the development of 3D structural descriptors and associated 3D QSAR methods. The most 
popular 3D QSAR methods are comparative molecular field analysis (CoMFA) and comparative 
molecular similarity analysis (CoMSIA)6,7. The CoMFA method involves generation of a 
common three dimensional lattice around a set of molecules and calculation of the steric and 
electrostatic interaction energies at the lattice points. The interaction energies are numerically very 
high when a lattice point is very close to an atom and special care needs to be taken in order to 
avoid problems arising because of this. The CoMSIA method avoids these problems by using 
similarity function represented as Gaussian. This information around the molecule is converted 
into numerical data using the partial least squares (PLS) method that reduces the dimensionality 
of data by generating components. However, a major disadvantage is that PLS attempts to fit a 
linear curve among all the points in the data set. Further, the PLS method does not offer scope 
for improvement in results. It has been observed from several reports that the predictive ability of 
PLS method is rather poor due to fitting of a linear curve between the available points. In the 
case of the CoMSIA method, molecular similarity is evaluated and used instead of molecular 
field, followed by PLS analysis. 

Variable selection methods have also been adopted for optimal region selection in 3D 
QSAR methods and shown to provide improved QSAR models as compared to the original 
CoMFA technique. For example, GOLPE was developed using chemometric principles, and q2-
GRS was developed on the basis of independent analyses of small areas (or regions) of near 
molecular space to address the issue of optimal region selection in CoMFA8,9. These 
considerations provide an impetus for the development of fast, generally nonlinear, variable 
selection methods for performing molecular field analysis. With the above facts and in 
continuation of our research for newer antitrypanosomal agent1 0  in the present study, we report 
here the development of a new method (kNN-MFA) that adopts a k-nearest neighbor principle 
for generating relationships of molecular fields with the experimentally reported activity to 
provide further insight into the key structural features required to design potential drug candidates 
of this class. This method utilizes the active analogue principle that lies at the foundation of 
medicinal chemistry. 
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2. Computational methods 
 
2.1. Methodology 
 
We hereby report the models, as generated by kNN-MFA in conjunction with stepwise 

(SW) forward-backward variable selection methods. In the kNN-MFA method, several models 
were generated for the selected members of training and test sets, and the corresponding best 
models are reported herein. VLife Molecular Design Suite (VLifeMDS), allows user to choose 
probe, grid size, and grid interval for the generation of descriptors. The variable selection 
methods along with the corresponding parameters are allowed to be chosen, and optimum models 
are generated by maximizing q2. k-nearest neighbor molecular field analysis (kNN-MFA) 
requires suitable alignment of given set of molecules. This is followed by generation of a common 
rectangular grid around the molecules. The steric and electrostatic interaction energies are 
computed at the lattice points of the grid using a methyl probe of charge +1. These interaction 
energy values are considered for relationship generation and utilized as descriptors to decide 
nearness between molecules. The term descriptor is utilized in the following discussion to 
indicate field values at the lattice points. The optimal training and test sets were generated using 
the sphere exclusion algorithm11. This algorithm allows the construction of training sets covering 
descriptor space occupied by representative points. Once the training and test sets were generated, 
kNN methodology was applied to the descriptors generated over the grid. 

 
Nearest Neighbor (kNN) Method 
 
The kNN methodology relies on a simple distance learning approach whereby an 

unknown member is classified according to the majority of its k-nearest neighbors in the training 
set. The nearness is measured by an appropriate distance metric (e.g., a molecular similarity 
measure calculated using field interactions of molecular structures). The standard kNN method is 
implemented simply as follows: Calculate distances between an unknown object (u) and all the 
objects in the training set;  select  k objects from the training set  most similar to object u, 
according to the calculated distances; and classify object u with the group to which the majority 
of the k objects belongs. An optimal k value is selected by optimization through the classification 
of a test set of samples or by leave-one out cross-validation12. 

 
kNN-MFA with Simulated Annealing 
Simulated annealing (SA) is the simulation of a physical process, ‘annealing’, which 

involves heating  the  system  to  a  high  temperature  and  then  gradually cooling  it  down  to  a  
preset temperature (e.g., room temperature). During this process, the system samples possible 
configurations distributed according to the Boltzmann distribution so that at equilibrium, low 
energy states are the most populated. 

 
kNN-MFA with Stepwise (SW) Variable Selection  
This method employs a stepwise variable selection procedure combined with kNN to 

optimize the number of nearest neighbors (k) and the selection of variables from the original pool 
as described in simulated annealing. 

 
kNN-MFA with Genetic Algorithm 
Genetic algorithms (GA) first described by Holland13 mimic natural evolution and 

selection. In biological systems, genetic information that determines the individuality of an 
organism is stored in chromosomes. Chromosomes are replicated and passed onto the next 
generation with selection criteria depending on fitness. 

 
2. 2. Chemical Data 
 
Twenty nine 1,3,4-thiadiazole-2-arylhydrazone derivatives as Trypanosoma cruzi 
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inhibitors were taken from the literature and used for kNN-MFA analysis1-3. The above reported 
1,3,4-thiadiazole-2-arylhydrazone derivatives showed wide variation in their structure and potency 
profiles. kNN-MFA (3D QSAR) models were generated for these derivatives using a training 
set of 22 molecules. Predictive power of the resulting models was evaluated by a test set of 7 
molecules with uniformly distributed biological activities. Selection of test set molecules was 
made by considering the fact that test set molecules represent structural features similar to 
compounds in the training set. The structures of all compounds along with their actual and 
predicted biological activities are shown in Table 1. 

 
2. 3. Biological Activities 
 
The negative logarithm of the measured IC50 (μM) against Trypanosoma cruzi as pIC50 

[pIC50 = –log (IC50× 10-6)] was used as dependent variable, thus correlating the data linear to the 
free energy change. Since some compounds exhibited insignificant/no inhibition, such compounds 
were excluded from the present study. All the IC50 values had been obtained using the 
trypomastigote form of T. cruzi and the assays were performed in Dulbecco’s modified Eagle 
medium. The IC50 values of reference compounds were checked to ensure that no difference 
occurred between different groups. The pIC50 values of the molecules under study spanned a wide 
range from 2 to 6. 

 
2. 4. Data Set 
 
All computational work was performed on Apple workstation (8-chore processor) using 

Vlife MDS QSAR plus software developed by Vlife Sciences Technologies Pvt Ltd, Pune, India, 
on windows XP operating system . All the compounds were drawn in Chem DBS using fragment 
database and then subjected to energy minimization using batch energy minimization method14. 

 
2. 5. Molecular Modeling and Alignment 
 
Conformational search were carried out by systemic conformational search method and 

lowest energy conformers were selected. All the compounds were aligned by template based 
method. The selection of template molecule for alignment was done by considering the following 
facts: a) the most active compound; b) the lead or commercial compound; c) the compound 
containing the greatest number of functional group15,16. Generally, the low energy conformer of 
the most active compound is selected as a reference17. In the present study, all the compounds 
were aligned against minimum energy conformation of most active compound no.2 (Fig.1) by 
using megazol nucleus as template shown in Fig.2 
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Fig.1. Reference molecule (2) used for alignment by template based alignment. 
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Fig.2. Megazol moiety as a template for alignment. 
2. 6. Selection of Training and Test Set 
 
The dataset of 29 molecules was divided into training and test set by Sphere Exclusion 

(SE) method for model 1, model 2 and model 3 having dissimilarities values of 5.0, 5.3 and 5.1 
respectively with pIC50 activity field as dependent variable and various 3D descriptors calculated 
for the compounds as independent variables. 

 
2. 7. Cross-Validation Using Weighted k-Nearest Neighbor 
 
This is done to test the internal stability and predictive ability of the QSAR models. 

Developed QSAR models were validated by the following procedure: 
 
2. 7.1 Internal Validation 
 
a.) A molecule in the training set was eliminated, and its biological activity was predicted 

as the weighted average activity of the k most similar molecules (eq.1). The similarities were 
evaluated as the inverse of Euclidean distances between molecules (eq.2) using only the 
subset of descriptors corresponding to the current trial solution. 

 

 
 

b.) Step 1 was repeated until every molecule in the training set has been eliminated 
and its activity predicted once. 

c.) The cross-validated r2 (q2) value was calculated using eq. 3, where yi and ŷi are the 
actual and predicted activities of the ith molecule, respectively, and ymean is the average k-Nearest 
neighbor activity of all molecules in the training set. Both summations are over all molecules in 
the training set. Since the calculation of the pair wise molecular similarities, and hence the 
predictions, were based upon the current trial solution, the q2 obtained is indicative of the 
predictive power of the current kNN-MFA model. 

 

 
 
2.7.2 External validation 
 
The predicted r2 (pred_r2) value was calculated using eq. 4, where yi and ŷi are the actual 

and predicted activities of the ith molecule in test set, respectively, and ymean is the average 
activity of all molecules in the training set. Both summations are over all molecules in the test 
set. The pred_r2 value is indicative of the predictive power of the current kNN-MFA model for 
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external test set. 

 
Both summations are over all molecules in the test set. Thus, the pred_r2 value is 

indicative of the predictive power of the current model for external test set. 
 
2.7.3 Randomization Test 
 
To evaluate the statistical significance of the QSAR model for an actual data set, we have 

employed a one-tail hypothesis testing. The robustness of the QSAR models for experimental 
training sets was examined by comparing these models to those derived for random data sets. 
Random sets were generated by rearranging biological activities of the training set molecules. The 
significance of the models hence obtained was derived based on calculated Zscore18. 

 

 
 

Where h is the q2 value calculated for the actual dataset, µ the average q2, and σ is its standard 
deviation calculated for various iterations using models build by different random data sets. The 
probability (α) of significance of randomization test is derived by comparing    Zscore value with 
Zscore critical value, if Zscore value is less than 4.0; otherwise it is calculated by the formula as 
given in the literature. For example, a Zscore value greater than 3.10 indicates that there is a 
probability (α) of less than 0.001 that the QSAR model constructed for the real dataset is 
random. The randomization test suggests that all the developed models have a probability of less 
than 1% that the model is generated by chance. 
 
 

3. Experimental 
 
All the twenty nine compounds were built on workstation of molecular modeling software 

VlifeMDS, which is a product Vlife Sciences Pvt Ltd., India19. We hereby report the models, as 
generated by kNN-MFA in conjunction with stepwise (SW) forward-backward variable selection 
methods shown in Table 3.  

In the present kNN-MFA study, (-13.2343 to19.1320) x (-12.0268 to15.04940) x (-

11.2513 to 15.4959) A0grid at the interval of 2.00 was generated around the aligned compounds. 
The steric and electrostatic interaction energies are computed at the lattice points of the grid using 
a methyl probe of charge +1 of Gasteiger-Marsili type. These interactions energy values are 
considered for relationship generation and utilized as descriptors to decide nearness between 
molecules. The QSAR models were developed using forward-backward variable selection method 
with pIC50 activity field as dependent variable and physico-chemical descriptors as independent 
variable having cross-correlation limit of 20, 19.2 and 19.5 for model 1, model 2 and model 3 
respectively. Selection of test and training set was done by sphere exclusion method having 
dissimilarity value of 5.0, 5.3 and 5.1 for model 1, model 2 and model 3 respectively. Variance cut 
off point was 1.0. Numbers of maximum and minimum neighbors were 5 and 2 respectively. 

The method described above has been implemented in software, Vlife Molecular Design 
Suite (VlifeMDS), 19 which allows user to choose probe, grid size, and grid interval for the 
generation of descriptors. The variable selection methods along with the corresponding 
parameters are allowed to be chosen, and optimum models are generated by maximizing q2. 

 
 
 
Steps involved in kNN-MFA method 
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1. Molecules are optimized before alignment optimization is done by MOPAC 
energy minimization and optimization is necessary process for proper alignment of molecules 
around template. 

2. kNN-MFA method requires suitable alignment of given set of molecules, 
alignment are template based. 

3. This is followed by generation of common rectangular grid around the 
molecules, the steric and electrostatic interaction energies are computed at the lattice points of the 
grid using a methyl probe of charge +1. 

4. The optimal training and test set were generated using sphere exclusion method. 
5. Model was generated by various kNN methods, and models validated internally 

and externally by leave one out, external validation. 
6. Predict the activity of test set of compounds. 
Since the final equation are not very useful to represent efficiently the kNN-MFA models, 

3D master grid maps of the best models are displayed. They represent area in space where steric 
and electrostatic field interactions are responsible for the observed variation of the biological 
activity. 

 
 
4. Results and discussion 
 
Training set of 22 and test set of 7 1,3,4-thiadiazole-2-arylhydrazone derivatives 

having different substitution were employed. Following statistical measure was used to correlate 
biological activity and molecular descriptors: n = number of molecules, Vn = number of 
descriptors, k = number of nearest neighbor, df = degree of freedom, r2= coefficient of 
determination, q2 = cross validated r2 (by the leave-one out method), pred_r2 = r2 for external test 
set, pred_r2se = coefficient of correlation of predicted data set, Z score = the Z score calculated 
by q2 in the randomization test, best_ran_q2 = the highest q2value in the randomization test and α 
= the statistical significance parameter obtained by the randomization test. 

Selecting training and test set by spherical exclusion method, Unicolumn statics shows 
that the max of the test is less than max of train set and the min of the test set is greater than of 
train set shown in Table 2, which is prerequisite analysis for further QSAR study. The 
above result shows that the test is interpolative i.e. derived within the min-max range of the 
train set. The mean and standard deviation of the train and test provides insight to the relative 
difference of mean and point density distribution of the two sets. In this case the mean in the 
test set higher than the train set shows the presence of relatively more active molecules as 
compared to the inactive ones. Also the similar standard deviation in both set indicates that the 
spread in both the set with their respective mean is comparable. 

The activity distribution graph shows the comparison between the activity of training 
and test set. It can be observed from Hierarchical Graph that the test set molecule activities lie 
within the range of training set, shown in Fig.3. 
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Fig 3. Hierarchical Graph Showing Uniform Distribution of Training and Test Set 
 

 
The observed and predicted pIC50 along with residual values for model 1 are shown in    

Table 1. The plot of observed vs. predicted activity is shown in Fig.4. From the plot it can be 
seen that kNN-MFA model is able to predict the activity of training set quite well (all points are 
close to regression line) as well as external. 

Table 1. Structure, Experimental and Predicted Activity of 1,3,4-thiadiazole-2-
arylhydrazone used in training and test set by model-1. IC50    = Compound concentration 
in micro mole that led to 50% lysis of the parasite, pIC50   = -Log (IC50 × 10-6): Training  
                and Test data set developed using model 1  T   = Test set molecule. 
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Fig 4. Graph of Actual vs. Predicted activities for training and test set molecules from the 
kNN-MFA model 1, A) Training set (Red dots) B) Test set (Blue dots) 

Table 2. Unicolumn Statics of Training and Test Sets. 
 
Unicolumn statics Average Max Min Std. Deviation 

 
For Training Set 
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For Test Set 
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During the kNN-MFA investigation, dissimilarity value for the selection of training and 
test by spherical exclusion method of range 5.000 to 6.500 were investigated. The dissimilarity 
value of 5.000 produced a significant result as compare to the 5.100 and 5.300 shown in the Table 
3. Further increases in resolution have produced decrease in model quality. From the Table 3 it 
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was observed that the results were less sensitive to resolution of dissimilarity value. 

 
Table 3. Stastical Results of kNN-MFA method. 

 
Parameters Model 1 

(Dissimilarity value = 5.0) 
Model 2 

(Dissimilarity value = 5.3) 
Model 3 

(Dissimilarity value = 5.1) 

n 22 19 20 

k 2 2 2 

q2 0.9455 0.7095 0.8197 

pred_r2 0.8087 0.3569 0.4038 

pred_r2se 0.5873 0.6985 0.6850 

Z score 4.4032 4.90615 4.2120 

best_ran_q2 0.72332 0.39887 0.49614 

α_ran_q2 0.00001 0.00002 0.0001 

Descriptors E_634  -1.0241  -0.8484 E_745  -0.3133  -0.0011 E_1635  0.1810  0.2870 

 E_500  -0.7053  -0.4139 S_533  -0.2987  0.2386 S_2195  -0.0142  -0.0100 

 E_1140  0.6002  1.2771 E_1262  0.0797  0.1640 E_2682  0.0891  0.1154 

 
 

Vn 

 S_1060  -0.0202  0.0313 
 

04 

 
 

03 

 
 

03 
 

 
n, number of observations (molecules); Vn, number of descriptors; k, number of nearest 
neighbors; q2, cross-validated r2 (by the leave-one out method); pred_r2, predicted r2 for the 
external test set; Zscore, the Zscore calculated by q2 in the randomization test; best_ran_q2, the 
highest q2 value in the randomization test and   α _ran_q2, the statistical significance parameter 
obtained by the randomization test. 
 

 
 
 
 
It is known that the CoMFA method provides significant value in terms of a new molecule 

design, when contours of the PLS coefficients are visualized for the set of molecules. Similarly, 
the kNN-MFA models provide direction for the design of new molecules in a rather convenient 
way. The points which contribute to the kNN-MFA model 1 are displayed in Fig. 5. The range of 
property values for the chosen points may aid in the design of new potent molecules (Fig. 5). 

The range is based on the variation of the field values at the chosen points using the most 
active molecule and its nearest neighbor set. 

 



533 
 

 
 

 
 

Fig. 5. 3D-alignement of molecule with the important steric and electrostatic point 
Contributing to the model with range of values shown in parenthesis 

 
 
The q2, pred_r2, Vn and k value of kNN-MFA with model 1, 2 and 3 were (0.9455, 

0.8087, 04/2) (0.7095, 0.3569, 03/2) and (0.8197, 0.4038, 03/2) respectively.  Among these three 
methods, model 1 have better q2 (0.9455) and pred_r2 (0.8087) than other two models, model 1 
correctly predicts activity 94.55% and 80.87% for the training and test set respectively. It uses 1 
steric and 3 electronic descriptors with 2 k nearest neighbor to evaluate activity of new molecule. 
The model is validated by α_ran_q2 = 0.00001, best_ran_q2 = 0.72332, and        
Zscore_ran_q2 = 4.4032 .The randomization test suggests that the developed model have a 
probability of less than 1% that the model is generated by chance. 

The kNN-MFA models obtained by using all the three dissimilarity values showed that 
electrostatic and steric interactions play major role in determining biological activity. S_1060 in 
model 1, S_533 in model 2 and S_2195 in model 3 are steric field descriptors similarly E_634, 
E_500, E_1140 in model 1, E_745, E_1262 in model 2 and E_1635, E_2682 in model 3 are 
electrostatic field descriptors. 

Negative value in electrostatic field descriptors indicates that negative electronic potential 
is required to increase activity and more electronegative substituents group is preferred in that 
position, positive range indicates that group that imparting positive electrostatic potential is 
favorable for activity so less electronegative group is preferred in that region. Similarly negative 
range in steric descriptors indicates that negative steric potential is favorable for activity and less 
bulky substituents group is preferred in that region, positive value of steric descriptors reveals 
that  positive steric  potential  is  favorable for  increase  in  activity and  more  bulky group is 
preferred in that region. 

 
 
5. Conclusions 
 
In conclusion, the model developed to predict the structural features of 1,3,4-

thiadiazole-2-arylhydrazone to inhibit Trypanosoma cruzi, reveals useful information about the 
structural features requirement for the molecule. In all three optimized models, Model 1 is 
giving very significant results. The master grid obtained for the various kNN-MFA models show 
that negative value in electrostatic field descriptors indicates the negative electronic potential is 
required to increase activity and more electronegative substituents group is preferred in that 
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position, positive range indicates that the group which imparts positive electrostatic potential is 
favorable for activity so less electronegative group is preferred in that region. Negative range in 
steric descriptors indicates that  negative  steric  potential  is  favorable  for  activity  and  less  
bulky  substituents  group  is preferred in that region. Positive value of steric descriptors reveals 
that positive steric potential is favorable for increase in activity and more bulky group is 
preferred in that region. On the basis of the spatial arrangement of the various shapes, 
electrostatic and steric potential contributions model proposed in this work is useful in describing 
QSAR of 1,3,4-thiadiazole-2-arylhydrazone derivatives as Trypanosoma cruzi inhibitor and can 
be employed to design new derivatives of 1,3,4-thiadiazole-2-arylhydrazone with specific 
inhibitory activity. 
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