Ultrasonic synthesis and characterization of CuO/Cu₂O composites as visible-light-driven photocatalyst

P. Intaphong ^{a,b,*}, P. Inphak ^{a,b}, S. Tandorn ^c, P. Kaewdee ^c, K. Chokethawai ^d, C. Randorn ^{a,e}

 ^a Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
 ^b Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, 50200, Thailand
 ^c Office of Research Administration, Chiang Mai University, Chiang Mai, 50200 Thailand
 ^d Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
 ^e Centre of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand

The heterojunction CuO/Cu₂O sample was prepared successfully via ultrasonic method with varying amounts of NaBH₄ for photodegradation of rhodamine B (RhB) and photoreduction of hexavalent chromium ions (Cr(VI)) under visible light irradiation. XRD patterns of asprepared heterojunction CuO/Cu₂O samples confirmed the coexistence of binary phase of monoclinic CuO structure (JCPDS no. 45-0937) as minor phase and cubic Cu₂O (JCPDS no. 05-0667) as major phase. SEM and TEM images of heterojunction CuO/Cu₂O sample demonstrated the agglomerated assembly nanoparticles and microparticles in shape. The UV–vis DRS spectra of heterojunction CuO/Cu₂O samples of 2.41-2.25 eV. The photocatalytic efficiencies over the as-synthesized CuO/Cu₂O samples with 0.20 g of NaBH₄ showed the 89.23% of RhB degeadation and 72.81% of Cr(VI) reduction under visible light illumination. Moreover, the photocatalytic mechanism and photocatalytic stability of CuO/Cu₂O composite were studied and proposed based on the experimental result in this research.

(Received February 6, 2025; Accepted May 16, 2025)

Keywords: Cu-based composite, CuO/Cu2O, Heterojunction, Photocatalytic activity

1. Introduction

In decade years, the increasing levels of persistent organic pollutants, including pesticides, synthetic organic dyes, herbicides, and pharmaceuticals, in various water sources have raised significant concerns about their potential environmental and human and organism health impacts [1, 2]. Traditional wastewater treatment methods including coagulation, filtration, precipitation, flotation and adsorption are largely ineffective in removing these pollutants due to their low biodegradability and create the secondary solid waste [3-5]. Semiconductor-based photocatalysts are an effective and cost-efficient approach for addressing large-scale environmental pollution due to the cost-effective, high stable, strongly oxidizing, environmentally friendly, and non-toxic for photocatalytic reactions [6, 7]. Among these, TiO₂ and ZnO are particularly suitable for photocatalytic application because of their non-toxicity, wide bandgap, and high photosensitivity [8-10]

Semiconductor copper oxide-based photocatalysts, p-type semiconductor cuprous oxide (Cu₂O) (band gap energy (E_g) = 2.20 eV) has been used in visible-light-driven photocatalyst due to its strong visible light response, non-toxicity, high stability and good chemical and physical

^{*} Corresponding author: intaphong.p@gmail.com https://doi.org/10.15251/DJNB.2025.202.531

properties [11-13]. In theory, the single semiconductor copper oxide-based photocatalyst was limited in practical photocatalytic application due to fast photo-generated electron-hole pairs [14, 15]. To solve this problem, the constructive p-n heterojunction copper oxide-based photocatalyst is an effective increase the photocatalytic performance due to create the internal electric filed at p-n heterojunction and accelerate the photogenerated carrier pairs migration at p-n heterojunction copper oxide-based photocatalyst [15-17]. The n-type semiconductor copper oxide (CuO) ($E_g = 1.50 \text{ eV}$) has garnered considerable attention in photocatalysis due to its good electron mobility, narrow band gap, and more efficient in absorption in solar light spectrum, making its highly effective for photocatalytic application [13, 17-19]. Therefore, the formation of CuO/Cu₂O heterojunction was improved the photocatalytic performance due to the effectively facilitated the separate rate of photogenerated charge pairs in photocatalytic reaction [16, 20].

In this work, the p-n heterojunction CuO/Cu₂O sample was prepared with varying amounts of NaBH₄ by ultrasonic method. The structure, phase composition, oxidation number of element, morphologies, photoluminescence and optical properties of as-synthesized CuO/Cu₂O composite were analyzed and discussed in this study. The photodegradation and photoreduction performances of CuO/Cu₂O composites under visible light irradiation were investigated by degradation of rhodamine B (RhB) as cationic azo dye model and reduction of hexavalent chromium (Cr(VI)) as heavy metal model.

2. Experimental method

To synthesize heterostructure CuO/Cu₂O photocatalyst by ultrasonic method, 0.01 mole of CuSO₄·5H₂O was dissolved in 50 mL of reverse osmosis (R.O.) water. Next, 50 mL of 0.01 mole of NaOH solution was slowly added into the Cu²⁺ solution under magnetic stirring. Then, the different weights of 0.05, 0.10, 0.15, 0.20, and 0.25 g of NaBH₄ solution with noted as C1, C2, C3, C4, and C5, respectively, were added into the copper solution. The mixture was transferred to an ultrasonic bath (480 W) with an ultrasonic frequency of 35 kHz and sonicated for 2 h. Finally, the heterostructure CuO/Cu₂O photocatalyst was filtered, washed, and dried for further characterization.

The photodegradation of rhodamine B (RhB) and the photoreduction of hexavalent chromium (Cr(VI)) from K₂Cr₂O₇ solution by the as-synthesized photocatalyst were studied in this research. The as-synthesized photocatalyst (1.0 g/L) was added into the 30.0 mL of 1.0 x 10^{-5} M RhB solution or 30.0 mL of 1.0 x 10^{-3} M K₂Cr₂O₇ solution under stirring in the dark for 30 min. Subsequently, the mixture was irradiated under a 50 W visible light LED lamp and 2.0 mL of the solution were collected at different time intervals. The absorptions of toxic pollutants were measured at λ_{max} of 554 nm for RhB and 350 nm for Cr(VI) using UV-visible spectroscopy.

3. Results and discussion

The X-ray diffraction (XRD) patterns of as-synthesized CuO/Cu₂O samples with the difference weight of NaBH₄ (from 0.05 g to 0.25 g) are shown in Fig. 1. The patterns can be indexed to the mixed phases of monoclinic CuO (JCPDS no. 45-0937) and cubic Cu₂O (JCPDS no. 05-0667) crystal structures. The diffraction peaks at $2\theta = 29.59^{\circ}$, 36.48° , 42.35° , 52.61° , and 61.39° are corresponding to the (110), (111), (200), (211), and (220) planes of the cubic Cu₂O phase, respectively. Meanwhile, the diffraction peaks at $2\theta = 35.72^{\circ}$, 38.62° , 38.92° , 46.17° , and 53.46° are corresponding to the (002), (111), (200), (-112), and (020) planes of the monoclinic CuO phase [21, 22]. The results confirm that the Cu²⁺ ions were reduced to Cu⁺ ions by NaBH₄ as a reducing agent to synthesize the cubic Cu₂O phase. The presence of intense and sharp diffraction peaks were observed in all CuO/Cu₂O samples, suggesting that products were well crystallized in nature. The impurities phases were not detected in XRD pattern of CuO/Cu₂O samples, indicating that the samples were composed of only the monoclinic CuO and cubic Cu₂O phase. When increasing the amout of NaBH₄, the diffraction intensity peaks of monoclinic CuO phase were decreased whereas the diffraction intensity peaks of cubic Cu₂O phase were increased, implying that the formation of cubic Cu₂O phase was influenced by concentration of NaBH₄ solution. The phase percentages of

CuO and Cu₂O in as-synthesized CuO/Cu₂O samples were calculated by the relative intensities diffraction between (002) planes of CuO and (111) plane of Cu₂O in Eq. (2) as below [23, 24]:

$$\varphi (Cu_2O) = I_{(111)}Cu_2O / [I_{(111)}Cu_2O + I_{(002)}CuO]$$
(2)

The volume fraction of CuO and Cu₂O in the as-synthesized CuO/Cu₂O samples was presented in Table 1. The particle sizes of CuO and Cu₂O in samples were determined by using the Scherrer equation [25-28]. The crystallite size (D) of CuO and Cu₂O was calculated from the diffraction peaks corresponding to the (002) plane of CuO and the (111) plane of Cu₂O. The results are summarized in Table 1.

Fig. 1. XRD patterns of as-prepared CuO/Cu₂O samples prepared via ultrasonic method.

Samples	Percent phases (%)		Particle sizes (nm)	
	CuO	Cu ₂ O	CuO	Cu ₂ O
C1	41.13	58.87	16.22	27.80
C2	25.32	74.68	17.86	33.58
C3	23.22	76.78	20.37	24.42
C4	22.27	77.73	21.43	28.58
C5	14.68	85.32	26.96	27.18

Table 1. Percent phases and particle sizes of as-prepared CuO/Cu₂O samples.

Scanning electron microspore (SEM) analysis was conducted to study the morphologies of as-synthesized CuO/Cu₂O samples prepared with varying amounts of NaBH₄. The SEM images of all as-synthesized CuO/Cu₂O samples (Fig. 2) exhibit the irregular shapes and agglomerates nanoparticles with an average size ranging from 0.1-0.6 μ m. Especially, the as-synthesized CuO/Cu₂O sample (C4) exhibits the loose agglomerated resemble nanoparticles and microparticles which is advantageous for photocatalytic activities. According to the previous reports., the loose agglomerated particles with a two-shaped structure demonstrate the higher photocatalytic activity when compared to agglomerated particles with a one-shaped structure. [12, 29, 30]. The average particle size of CuO/Cu₂O was increased with increasing amount of NaBH₄ [31-33]. However, the

 CuO/Cu_2O synthesized with 0.25 g of NaBH₄ (C5) exhibited extreme agglomeration of nanoparticles which decrease the photocatalytic activity [12, 32, 34].

Fig. 2. SEM images of CuO/Cu₂O samples prepared with (a) 0.05, (b) 0.10, (c) 0.15, (d) 0.20, and (e) 0.25 g of NaBH₄ adding, respectively by ultrasonic method.

Fig. 3. (a) TEM image of as-prepared CuO nanoparticles/Cu₂O microparticles (C4), (b) SAED pattern of CuO nanoparticles island and HRTEM images of (c) single CuO nanoparticle and (d) single Cu₂O microparticle.

Transmission electron microscope (TEM) image of as-obtained CuO/Cu₂O sample in present of 0.20 g NaBH₄ (Fig. 3a) was composed of uniform nanoparticles with size of 50-100 nm which supported on the surface of microparticles with size of 500-600 nm. The selected area electron diffraction (SAED) pattern of nanoparticles island shows the bright ring electron diffraction pattern which can be in indexed to the (-110), (002), (-112), (020), and (-220) planes of monoclinic CuO structure. The high-resolution transmission electron microscopy (HRTEM) images of individual CuO nanoparticle (Fig. 3c) and Cu₂O microparticle (Fig. 3d) shows lattice spacing of 0.25 nm and 0.24 nm which are corresponded to (002) of monoclinic CuO phase (JCPDS no. 45-0937) and (111) planes of the cubic Cu₂O structure (JCPDS no. 05-0667) [21, 22], confirming the CuO nanoparticles supported on the surface of Cu₂O microparticles.

Fig. 4 (a) Full XPS survey scan at 0-1200 eV and high-resolution binding energy spectra of (b) Cu 2p at 925-965 eV and (c) O 1s at 524-538 eV in as-prepared CuO/Cu₂O sample in present of 0.20 g NaBH₄ (C4) by ultrasonic method.

Fig. 4a shows the full X-ray photoelectron spectroscopy (XPS) survey scan in as-prepared CuO/Cu_2O sample in present of 0.20 g NaBH₄ (C4) which were mainly composed of Cu, O, and C elements in sample. Fig. 4b shows the asymmetric high resolution binding energy peak of Cu 2p which can be fitted into six peaks at 932.14, 933.85, and 935.55 eV for Cu $2p_{3/2}$ core level and 952.29, 954.10, and 955.93 eV for Cu $2p_{1/2}$ core level. The oxidation state of Cu²⁺ ions in CuO shows the symmetric binding energies at 932.14 eV for Cu $2p_{3/2}$ core level and 952.29 eV for Cu $2p_{1/2}$ core level with spin-orbit separation of 20.15 eV [35, 36]. The oxidation state of Cu⁺ ions in Cu₂O shows the symmetric binding energies at 933.85 eV for Cu 2p_{3/2} core level and 954.10 eV for Cu 2p_{1/2} core level with spin-orbit separation of 20.25 eV [35, 36]. However, the symmetric binding energies of Cu 2p_{3/2} located at 935.55 eV and Cu 2p_{1/2} peaks located at 955.93 eV were assigned to the satellite peaks form multiple excitations in $2p^{0}3d^{9}$ configuration of Cu^{2+} in the CuO phase [36, 37]. The asymmetric binding energies of O 1s (Fig. 4c) can be deconvoluted by Gaussian analysis into four symmetric binding energies peaks located at 528.58, 530.15, 531.70, and 532.98 eV. The symmetric binding energies peaks of O 1s core level located at 528.58 and 530.15 eV can be defined as the Cu-O bonding in CuO and Cu₂O lattices while the peak located at 531.70 and 532.98 eV can be attributed to adsorbed O_2 and OH^2 on the surface of as-prepared CuO/Cu₂O samples surface [21, 38].

Fig. 5a shows the UV–Vis diffuse reflectance spectroscopy (DRS) spectra of as-synthesized CuO/Cu₂O samples with the difference amounts of NaBH₄. All samples exhibit strong absorption in the UV–Vis region, confirming their excellent light-harvesting capability and suggesting their suitability as visible-light-driven photocatalysts. The E_g of the CuO/Cu₂O samples were estimated using the Kubelka–Munk function, allowing for a comparative analysis of the effect of NaBH₄ concentration on the optical properties of the photocatalysts [39, 40]. Fig. 5b shows the plots of

 $(\alpha hv)^2$ versus hv of the as-synthesized CuO/Cu₂O samples with the difference amount of NaBH₄ samples [12, 37, 41]. The E_g of as-synthesized C1 sample at 2.41 eV was shifted to 2.25 eV for as-synthesized C5 sample, indicating that the E_g of as-synthesized CuO/Cu₂O samples was decreased with increasing the phase percentage of Cu₂O in samples.

Fig. 5. (a) UV-Vis DRS spectra and (b) E_g form Kubelka-Munk method of as-synthesized CuO/Cu₂O samples with the difference of amount NaBH₄ samples.

Fig. 6a presents the RhB degradation under visible light irradiation using CuO/Cu₂O samples synthesized at varying NaBH4 amounts. The pure RhB solution without photocatalyst under visible light irradiation as control experiment presents non-photolysis under visible light irradiation [42, 43]. Comparing to CuO/Cu₂O samples, the photocatalytic efficiencies of RhB degradation over the as-synthesized CuO/Cu₂O samples with the difference of amount NaBH₄ samples were 40.72%, 55.01%, 71.50%, 89.23% and 61.17%, for C1, C2, C3, C4, and C5 samples, respectively. Among them, the photocatalytic activity of CuO/Cu₂O sample with 0.20 g NaBH₄ was the highest owing to the effectively facilitates the separate rate of photogenerated charge pairs. The photocatalytic activities of RhB degradation over as-synthesized CuO/Cu₂O sample were increased with increasing the percent phase of Cu₂O form 40.72% for C1 sample to 89.23% for C4 sample [34, 44]. According to the previous report, F.T. Joorabi et. al reported that the heterostructure CuO/Cu₂O samples show the excellent photodegradation of methylene blue (MB) of 90% and methyl orange (MO) of 60% within 240 min due to the creation of hybrid CuO-Cu₂O heterojunction, suppressing the recombination rate of photogeneated charge pairs [22]. However, the photocatalytic activities of RhB degradation over as-synthesized CuO/Cu₂O sample decrease with increasing the percent phase of Cu₂O to 85.32% for C5 sample because it may act as charge carrier recombination centers, decreasing photocatalytic performance. Fig. 7 shows the photoluminescent (PL) spectra of asprepared CuO/Cu₂O samples prepared by ultrasonic method. It was observed that the intensity of PL spectrum of C4 exhibits the higher PL than other samples, suggesting that the highest electronhole pairs production and enhance the photocatalytic performance [22, 44, 45]. The kinetic photocatalytic degradation of RhB in present of all photocatalyst were calculated on the Langmuir-Hinstelwood model as shown in Fig. 6b [33, 46]. It shows a good linear relationship between $\ln(C_0/C_1)$ of RhB versus reaction time for all heterostructure CuO/Cu₂O samples with R² > 0.9, suggesting that photocatalytic degradation of RhB over photocatalysts was the first-order reaction [20, 47, 48]. The kinetic rate of photocatalytic degradation of RhB in present of as-prepared CuO/Cu₂O photocatalyst were 1.62 x 10⁻³, 2.38 x 10⁻³, 3.94 x 10⁻³, 7.06 x 10⁻³, and 2.87 x 10⁻³ min⁻¹ for C1, C2, C3, C4, and C5 samples, respectively. The kinetic rate of C4 sample is the highest, indicating that the C4 sample is the excellent photocatalysis.

Fig. 6. (a) Photodegradation efficiencies and (b) Langmuir-Hinstelwood model of RhB degradation using as-prepared CuO/Cu₂O photocatalyst.

To investigate the role of active species in the photocatalytic process, the scavenger reagents including isopropanol (IPA) for $^{\circ}OH$ trapping, 1,4-benzoquinone (BQ) for $^{\circ}O_2^{-}$ trapping, and sodium oxalate (Na₂C₂O₄) for h⁺ trapping were added in RhB degradation over C4 as shown in Fig. 8a [33, 38, 49]. The photocatalytic efficiency of RhB degradation was obviously inhibited with the addition of IPA, demonstrating that the $^{\circ}OH$ played the main active species for RhB degradation in present of C4 under visible light irradiation. In addition, Fig. 8b shows the cyclic photocatalytic performances of reused C4 sample after five recycles times which decrease to 83.87% after being reused five times, indicating that the C4 sample shows the high stability and reusability in practical photocatalytic applications [36, 49, 50].

Fig. 7. PL spectra of the CuO/Cu_2O samples prepared with the difference of amount NaBH₄ by ultrasonic method.

Fig. 8. (a) Scavenger testing and (b) cyclic photodegradation of RhB in present of as-prepared CuO/Cu₂O sample (C4).

Fig. 9a illustrates the photoreduction performance of Cr(VI) under visible light irradiation using as-prepared CuO/Cu₂O samples synthesized at different amounts of NaBH₄. The pure Cr(VI) solution without a photocatalyst exhibited the no photoreduction under visible light irradiation [41, 51]. It was observed that the photoreduction efficiencies of Cr(VI) over the as-synthesized CuO/Cu₂O samples with the difference amount of NaBH₄ were 23.60%, 50.12%, 55.06%, 72.81% and 30.12%, for the C1, C2, C3, C4, and C5 samples, respectively. The photocatalytic reduction kinetics of Cr(VI) in presence of all photocatalysts were calculated on the Langmuir-Hinstelwood model, as shown in Fig. 9b [34, 46]. It shows the linear curve plot of $\ln(C_0/C_t)$ versus irradiated time (t) of Cr(VI) reduction with $R^2 > 0.9$ was observed for all CuO/Cu₂O samples under visible light irradiation, indicating that the photoreduction of Cr(VI) over CuO/Cu₂O samples followed pseudofirst-order kinetic reaction [34, 46]. The kinetic rate of photoreduction efficiencies of Cr(VI) over CuO/Cu₂O samples were 7.32 x 10⁻⁴, 1.91 x 10⁻³, 1.29 x 10⁻³, 3.664 x 10⁻³, and 1.14 x 10⁻³ min⁻¹ for 0.05, 0.10, 0.15, 0.20, and 0.25 g of NaBH₄ adding, respectively. Among these, the C4 sample exhibited the highest photocatalytic reduction efficiency. This enhanced performance is attributed to the effective separation and transfer of photogenerated charge carrier pairs at the CuO-Cu₂O heterojunction interface and its superior visible light absorption capability [47, 52]. Therefore, the C4 heterostructured CuO/Cu₂O sample demonstrated the promising visible-light-driven photooxidation and photoreduction activities.

Fig. 9 (a) Photoreduction efficiencies and (b) Langmuir-Hinstelwood model of Cr(VI) using as-prepared CuO/Cu₂O photocatalyst.

Fig. 10 shows the proposed schematic of the photocatalytic mechanism for the as-prepared CuO/Cu₂O heterojunction. The CuO as n-type semiconductor and Cu₂O as p-type semiconductor were created the internal electric filed at p-n heterojunction which accelerate the photogenerated carrier pairs migration between the CuO and Cu₂O as photocatalysts unit the Fermi level equilibrium, suppressing the recombination of photo-induced electron-hole pairs [15, 16, 53, 54]. First, the higher photon energies than the band gaps of CuO and Cu₂O were illuminated on the CuO and Cu₂O surfaces. The photo-induced electrons were excited in the conduction band (CB) on the CuO and Cu₂O while the photo-induced holes were created in the valance band (VB) on the CuO and Cu₂O. Second, the photo-induced electrons were easily moved from the CB of Cu₂O to the CB of CuO due to the potential of the conduction band (E_{CB}) of Cu₂O (E_{CB} Cu₂O = -1.83 eV [55]) is negative than E_{CB} of Cu_2O (E_{CB} CuO = -0.70 eV [55]). At the same time, the photo-induced holes were moved from VB of CuO to the VB of Cu₂O due to the potential of the valence band (E_{VB}) of CuO (E_{VB} CuO = 0.88 eV [55]) is positive than E_{CB} of Cu₂O (E_{VB} Cu₂O = 0.64 eV [55]). Third, the photo-induced electrons in the CB of CuO and photo-induced holes in the VB of Cu₂O were reacted with absorbed oxygen (O₂) and water (H₂O) molecules which causes the formation of ${}^{\bullet}O_{2}^{-}$ and ${}^{\bullet}OH$ radicals to degrade the dye molecules [15, 16, 54, 55]. The presence of optimal group phase ratio of CuO and Cu₂O in this research is crucial for the promotes effective separation of electrons and holes for achieving high photocatalytic activities. The proportion of CuO:Cu₂O is not suitable which it may act as charge carrier recombination centers, decreasing the photocatalytic activities [16, 50]. Furthermore, the grain size of CuO/Cu₂O composites can also impact the behavior of charge carrier, enhancing the photocatalytic reaction.

Fig. 10. The photocatalytic mechanism for the as-prepared CuO/Cu₂O heterojunction.

4. Conclusions

In this research, the heterojunction CuO/Cu_2O sample was prepared successfully via ultrasonic method. The heterojunction CuO/Cu_2O sample showed the excellent photodegradation of RhB and photoreduction of Cr(VI) under visible light irradiation. Finally, the heterojunction CuO/Cu_2O (C4) sample showed the highly stability for reusable in practice photocatalytic application.

Acknowledgements

Prakasit Intaphong would like to acknowledge the Science Achievement Scholarship of Thailand (SAST) for supporting Ph.D. scholarship. Pasu Inphak would like to acknowledge Royal Golden Jubilee PhD (RGJ) scholarship. This research was partially funded by Chiang Mai University.

References

[1] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S. M. R. Darvishi, Industrial & Engineering Chemistry Research 59, 15894 (2020); <u>https://doi.org/10.1021/acs.iecr.0c03192</u>

[2] A. El Golli, S. Contreras, C. Dridi, Scientific Reports 13, 20809 (2023); https://doi.org/10.1038/s41598-023-47554-2

[3] M. Ahmed, M. O. Mavukkandy, A. Giwa, M. Elektorowicz, E. Katsou, O. Khelifi, V. Naddeo, S, W. Hasan, Sustainable Clean Water 5, 12 (2022); <u>https://doi.org/10.1038/s41545-022-00154-5</u>

[4] T. E. Oladimeji, M. Oyedemi, M. E. Emetere, O. Agboola, J. B. Adeoye, O. A. Odunlami, Heliyon 10, e40370 (2024); <u>https://doi.org/10.1016/j.heliyon.2024.e40370</u>

[5] G. Z. Kyzas, K. A. Matis, Processes 6, 116 (2018); <u>https://doi.org/10.3390/pr6080116</u>

[6] T. Sansenya, N. Masri, T. Chankhanittha, T. Senasu, J. Piriyanon, S. Mukdasai, S. Nanan, Journal of Physics and Chemistry of Solids 160, 110353 (2022); https://doi.org/10.1016/j.jpcs.2021.110353

[7] M. A. Hassaan, M. A. El Nemr, M. R. Elkatory, S. Ragab, V. C. Niculescu, A. El-Nemr, Topics in Current Chemistry 381, 31 (2023); <u>https://doi.org/10.1007/s41061-023-00444-7</u>

[8] R. Sultana, S. I. Liba, Md A. Rahman, N. Yachin, I. M. Syed, M. A. Bhuiyan, Surfaces and Interfaces 42, 103302 (2023); <u>https://doi.org/10.1016/j.surfin.2023.103302</u>

[9] D. Neena, K. K. Kondamareddy, H. Bin, D. Lu, P. Kumar, R. K. Dwivedi, V. O. Pelenovich, X. Z. Zhao, W. Gao, D. Fu, Scientific Reports 8, 10691 (2018); <u>https://doi.org/10.1038/s41598-018-29025-1</u>

[10] J. Li, W. Li, X. Li, Y. Li, H. Bai, M. Li, G. Xi, RSC Advances 7, 23846 (2017); https://doi.org/10.1039/C7RA03389C

[11] X. Deng, C. Wang, M. Shao, X. Xu, J. Huang, RSC Advances 7, 4329, (2017); https://doi.org/10.1039/C6RA27634B

[12] Q. Jiang, J. Jiang, R. Deng, X. Xie, J. Meng, New Journal of Chemistry 44(16), 6369 (2020); <u>https://doi.org/10.1039/D0NJ00090F</u>

[13] B. Durán, C. Saldías, R. Villarroel, S. A. Hevia, Coatings 13, 179 (2023); https://doi.org/10.3390/coatings13010179

[14] J. Wang, S. Li, P. Ma, Z. Guo, Q. Ma, Q. Zhao, Y. Guo, J. Zhao, G. Guan, Colloids and Surfaces A: Physicochemical and Engineering 690, 133779 (2024); https://doi.org/10.1016/j.colsurfa.2024.133779

[15] J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Advanced Materials 29, 1601694 (2017); <u>https://doi.org/10.1002/adma.201601694</u>

[16] G. Mamba, C. Pulgarin, J. Kiwi, M. Bensimon, S. Rtimi, Journal of Catalysis 353, 133-140 (2017); <u>https://doi.org/10.1016/j.jcat.2017.06.036</u>

[17] F. Ansari, S. Sheibani, M. F. García, Journal of Alloys and Compounds 919, 165864 (2022); <u>https://doi.org/10.1016/j.jallcom.2022.165864</u>

[18] P. Raizada, A. Sudhaik, S. Patial, V. Hasija, A. A. P. Khan, P. Singh, S. Gautam, M. Kaur, V. H. Nguyen, Arabian Journal of Chemistry 13, 8424 (2020); <u>https://doi.org/10.1016/j.arabjc.2020.06.031</u>

[19] S. Krobthong, K. Umma, T. Rungsawang, T. Mirian, S. Wongrerkdee,

S. Nilphai, K. Hongsith, S. Choopun, S. Wongrerkdee, C. Raktham,

P. Pimpang, Digest Journal of Nanomaterials and Biostructures 20, 1 (2025);

[20] N. D. Khiavi, R. Katal, S. K. Eshkalak, S. M. Panah, S. Ramakrishna, H. Jiangyong, Nanomaterials 9, 1011 (2019); <u>https://doi.org/10.3390/nano9071011</u>

[21] S. Kumar, Bhawna, A. Gupta, R. Kumar, A. Bharti, A. Kumar, V. Kumar, Journal of Physical Chemistry C 127, 7095 (2023); <u>https://doi.org/10.1021/acs.jpcc.2c08094</u>

[22] F. T. Joorabi, M. Kamali, S. Sheibani, Materials Science in Semiconductor Processing 139 (2022) 106335; <u>https://doi.org/10.1016/j.mssp.2021.106335</u>

[23] J. Kaur, A. Khanna, R. Kumar, R. Chandra, Journal of Materials Science: Materials in Electronics 33, 16154 (2022); <u>https://doi.org/10.1007/s10854-022-08506-0</u>

 [24] S. Yamamoto, R. Yokoyama, K. Imahori, P. L. Khoo, N. Asano, S. Asahina, T. Shinagawa, M. Izak, Journal of The Electrochemical Society 170, 032505 (2023); https://doi.org/10.1149/1945-7111/acb616

[25] Z. Mamiyev, N. O. Balayeva, Catalysts 12, 1316 (2022); https://doi.org/10.3390/catal12111316

[26] J. Ge, Y. Zhang, Y. J. Heo, S. J. Park, Catalysts 9, 122 (2019); https://doi.org/10.3390/catal9020122

[27] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001); https://doi.org/10.1126/science.1061051

[28] J. A. Fuentes-García, J. Santoyo-Salzar, E. Rangel-Cortes, G. F. Goya, V. Cardozo-Mata, J. A. Pescador-Rojas, Ultrasonics Sonochemistry 70, 105274 (2021); https://doi.org/10.1016/j.ultsonch.2020.105274

[29] J. P. Prajapati, D. Das, S. Katlakunta, N.Maramu, V. Ranjan, S. Mallick, Inorganica Chimica Acta 515, 120069 (2021); <u>https://doi.org/10.1016/j.ica.2020.120069</u>

[30] S. A. Rastabi, J. Moghaddam, M. R. Eskandarian, Journal of Industrial and Engineering Chemistry 22, 34 (2015); <u>https://doi.org/10.1016/j.jiec.2014.06.022</u>

[31] M. Mallik, S. Monia, M. Gupta, A. Ghosh, M. P. Toppo, H. Roy, Journal of Alloys and Compounds 829, 154623 (2020); <u>https://doi.org/10.1016/j.jallcom.2020.154623</u>

[32] A. Regmi, J. Bhandari, S. Bhattarai, S. K. Gautam, Journal of Nepal Chemical Society 40, 5 (2019); <u>https://doi.org/10.3126/jncs.v40i0.27271</u>

[33] G. Fan, F. Li, Chemical Engineering Journal 167, 388 (2011)

[34] Z. Gao, B. Yao, T. Xu, M. Ma, Materials Letters 259, 126874 (2020); https://doi.org/10.1016/j.matlet.2019.126874

[35] W. Mondach, S. Chanklang, P. Somchuea, T. Witoon, M. Chareonpanich, K. Faungnawakij, H. Sohn, A. Seubsai, Scientific Reports 11, 23042 (2021); <u>https://doi.org/10.1038/s41598-021-02416-7</u>

[36] S. Nandanwar, S. Borkar, J H. Cho, H. J. Kim, Catalysts 11, 36 (2021); https://doi.org/10.3390/catal11010036

[37] B. Durán, C. Saldías, R, Villarroel, S. A. Hevia, Coatings 13, 179 (2023); https://doi.org/10.3390/coatings13010179

[38] A. Serra, E. Gomez, J. Michler, L. Philippe, Chemical Engineering Journal 413 (2021) 127477; <u>https://doi.org/10.1016/j.cej.2020.127477</u>

[39] D. Gupta, S.R. Meher, N. Illyaskutty, Z. C. Alex, Journal of Alloys and Compounds 734, (2018);

[40] R. H. Saadabadi, F. S. Tehrani, Z. Sabouri, M. Darroudi, Scientific Reports 14, 29812 (2024); <u>https://doi.org/10.1038/s41598-024-81692-5</u>

[41] A. K. Mishra, D. Pradhan, Crystal Growth and Design 16, 3688 (2016); https://doi.org/10.1021/acs.cgd.6b00186

[42] M. Utami, S. Wang, F. I. Fajarwati, S. N. Salsabilla, T. A. Dewi, M. Fitri, Crystals 13, 588 (2023); <u>https://doi.org/10.3390/cryst13040588</u>

[43] M. A. Gatou, E, Fiorentis, N, Lagopati, E. A. Pavlatou, Water 15, 2773 (2023); https://doi.org/10.3390/w15152773

[44] T. Amakali, A. Živković, M. E. A. Warwick, D. R. Jones, C. W. Dunnill, L. S. Daniel, V. Uahengo, C. E. Mitchell, N. Y. Dzade, N. H. de Leeuw, Frontiers in Chemistry 10, 835832

(2022);

https://doi.org/10.3389/fchem.2022.835832

[45] S. Karthikeyan, C. Chuaicham, R. R. Pawar, K. Sasaki, W. Li, A. F. Lee, K. Wilson, Journal of Materials Chemistry A 7, 20767 (2019); https://doi.org/10.1039/C9TA07009E

[46] M. Ramesh, Water Practice and Technology 16, 1078 (2021); https://doi.org/10.2166/wpt.2021.067

[47] X. Dou, C. Zhang, H. Shi, Separation and Purification Technology 282, 120023 (2022); https://doi.org/10.1016/j.seppur.2021.120023

[48] A. G. Naikwade, M. B. Jagadale, D. P. Kale, A. D. Gophane, K. M. Garadkar, G. S. Rashinkar, ACS Omega 5, 131 (2020);

https://doi.org/10.1021/acsomega.9b02040

[49] N. D. Khiavi, R. Katal, S. K. Eshkalak, S. M. Panah, S. Ramakrishna, H. Jiangyong, Nanomaterials 2019, 9, 1011; <u>https://doi.org/10.3390/nano9071011</u>

[50] D. Jiang, J. Xue, L. Wu, W. Zhou, Y. Zhang, X. Li, Applied Catalysis B: Environmental 211, 199(2017); <u>https://doi.org/10.1016/j.apcatb.2017.04.034</u>

[51] B. Gopal, A. Gupta, ACS Omega 4, 20443 (2019); https://doi.org/10.1021/acsomega.9b01452

[52] M. A. Elkodous, G. Kawamura, W. K. Tan, A. Matsuda, Materials Letters 323, 132606 (2022); <u>https://doi.org/10.1016/j.matlet.2022.132606</u>

[53] M. E. Aguirre, R. Zhou, A. J. Eugene, M. I. Guzman, M. A. Grela, Applied Catalysis B: Environmental 217, 485 (2017)

[54] Q. Yu, J. Pan, J. Mei, Z. Chen, P. Wang, P. Wang, J. Wang, C. Song, Y. Zheng, C. Li, Journal of Materials Science 56, 5736 (2021);

https://doi.org/10.1007/s10853-020-05704-1

[55] Y. Yang, D. Xu, Q. Wu, P. Diao, Scientific Reports 6, 35158 (2016); https://doi.org/10.1038/srep35158