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This study focusing on the removal of inorganic and microbial contaminants from drinking 
water. The  activated carbons (ACs) were synthesized as precursor AC-1, derived from 
sustainable waste bagasse hydrochars through phosphoric acid activation, exhibits 
substantial antibacterial properties and a significant specific surface area of 1460 m2/g. 
The AC-1 was immobilized with FeS (AC-FeS), demonstrates remarkable efficiency in 
removing (F-), (NO3

-), and gram-negative bacteria from drinking water, outperforming 
previous methods under dynamic conditions. Optimized removal for NO3

- and F- reached 
94% and 92%, respectively with 100% bacterial removal within 6 hours. The bacterial 
decontamination closely adhered to the Langmuir kinetics. 
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1. Introduction 
 
Water pollution, characterized by inorganic and microbial contaminants, is a global crisis 

impacting human health and environmental sustainability. In the United States, the prevalence of 
diseases like diarrheal deaths and stomach infections has been linked to high concentrations of 
aquatic microbes, often surpassing [1] the safety limits set by the World Health Organization and 
the U.S. Environmental Protection Agency. [2] The situation is even more dire in developing coun-
tries, where waterborne diseases annually claim millions of lives due to the presence of harmful 
bacteria and inorganic pollutants in drinking water. [3] This looming crisis, exacerbated by resource 
scarcity, predicts that a billion people could lack access to clean water in the coming decades. [4,5] 
Waterborne diseases, ranging from diarrhea and tuberculosis to ulcers that can evolve into cancers, 
are often attributed to contaminants like bacteria and nitrates in freshwater bodies. [6] Additionally, 
issues like fluorosis arise from fluoride in water, underscoring the urgent need for innovative water 
purification technologies. 

Activated carbons (ACs), derived from biomass, have emerged as a promising solution 
against waterborne pathogens and inorganic pollutants,[7,8] offering an effective technique for pu-
rifying drinking water. While other materials like chitosan, [9] nano-silver, [10] titanium dioxide, 
[11] carbon-based nanomaterials, [12] and iron sulfide nanoparticles[13] have shown potential in 
water decontamination, the effectiveness of these technologies largely depends on their composition. 
[14] Recent advancements have highlighted the efficacy of nanotechnology-based solutions, [15,16] 
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including carbon nanotubes, nanocatalysts, membrane technology, and nano-sorbents, in treating 
polluted water. In particular, combining nanoparticles with ACs could offer enhanced decontamina-
tion capabilities. [17] ACs, known for their large surface area, are ideal substrates for nanoparticle 
impregnation. Sources like rice husk, [18] coconut shells, [19] and plant biomass, [20] can be tai-
lored with metal nanoparticles for water purification. [21] For instance, iron sulfide nanoparticles 
have shown significant activity against bacteria,[22] nitrates[23] and fluoride[24] in water, with var-
ious studies reporting successful removal of these contaminants using bio-derived ACs. [25-27] 

Despite this, developing an effective solution for aqueous pathogens remains a challenge. 
[28] This paper introduces a novel material with improved dual potential for removing inorganics 
and microbes from polluted water. This material not only demonstrates a high surface area but is 
also derived from recyclable sources, making it a robust and sustainable option for water treatment. 

 
 
2. Experimental 
 
The hydrochar was prepared by drying the waste bagasse at 110°C for 12 hours in a vacuum 

oven. The products were then crushed and ground into a fine powder. The powdered material (32g) 
was then filled in an autoclave (50 ml, Sigma Scientific China), using 17.9 ml of distilled water 
(filling 35.8 % area of the autoclave). The hydrothermal carbonization (HTC) was done at 200°C 
for 12 hours [29]. The resultant hydrochar was washed thoroughly with deionized water and dried 
overnight in a vacuum oven at 110°C (Thermo-Scientific Ireland). The hydrochar was activated 
using an acid (H3PO4, Sigma Aldrich) with precursor to acid ration of 1:2 precisely. A weighted 
amount of 10g of hydrochars were mixed with 14.05g of H3PO4 and stirred overnight at 150rpm. 
Then activation was done at 900°C (5°C /minute) [30], under nitrogen flow (6 mL/min) for 12 hours, 
to get an activated carbon sample (AC-1). The resultant sample was then washed with deionized 
water until the pH was stabilized and dried at 110°C overnight in a vacuum oven.  

The AC-1 was subsequently impregnated with FeS to prepare AC-FeS using the insitu in-
cipient wetness method. FeS micronpowder (Thermo-Scientific USA) was used for impregnation. 
To synthesize AC-FeS material, the activated material (0.5.g) was mixed with 1.75mmol FeS (using 
0.153g of FeS) and stirred overnight. Material was heated in a tube-furnace, at 1200°C in an inert 

atmosphere for 2 hours to obtain FeS impregnated AC. The AC-FeS was collected, rinsed with de-
ionized water, and left to dry at 110°C overnight in a vacuum oven. 

Textural analyses of all samples were performed on Micromeratics ASAP 2020 using 
nitrogen gas sorption technique after degassing at 300C°. The adsorption models such as Brunauer 
Emmett-Teller (BET) and density functional theory (DFT) methods used to find specific surface 
area and microporous volumes. Thermal stability was assessed through Discovery TGA instrument 
with a ramp of 10C°/minute under air environment. The morphology of the material was analyzed 
using transmission electron microscopy (TEM, JEOL JEM 2100), the sample was mixed with 
deionized water and a film is made on a carbon coated grid (400 mesh) and allowed to dry for 40 
minutes before going for imaging. Scanning electron microscopy (SEM) instrument was used to 
obtain SEM-micrographs, taken at JSM-7401F (JEOL, Japan). The instrument has a Schottky-type 
field emission gun and a secondary electron detector. The working distance was kept at 3 millime-
ters. The instrument was operated at 0.6 kV accelerating voltage without applying any coating. Dried 
particles were transferred on carbon coated aluminum substrate before loading in the microscope. 
Energy dispersive X-rays spectroscopy (EDS) coupled with SEM instrument, provided 
morphological and compositional insights. Raman (Horiba LabRAM HR 800, laser power of 50mW 
at laser intensities of 10 per cent and laser wavelength was 535 nm) and inferared spectroscopy (FT-
9700, Perkin Elmer, using sample pallets) were employed for molecular characterization, and X-ray 
diffraction (XRD) analysis was carried out in X’Pert PRO X-ray diffractometer (USA) with Cu-Kα 
X-ray (λ = 0.15418 nm) ranging from 10° to 80° was used to understand the crystalline/amorphous 
nature of the materials. Further details of the methods is provided in the supporting information. 

 The Lovibond’s Spectrophotometer (Lovibond XD-7500 Germany) was used to obtain the 
concentrations of both NO3

- and F- ions. Nitra-X kit (Lovibond Germany) was used for NO3
- analysis 

and standard SPANDS solution (Lovibond Germany) was used in F- analysis. The sorption was 
carried out in both static (unstirred) and dynamic conditions (stirred at 50rpm) but optimum removal 
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percentages for NO3

- and F- were attained under dynamic conditions when AC-FeS was used. 0.1g 
of the material was used for both NO3

- and F- absorption, initial concentrations for both NO3
- and F- 

solutions were 30 ppm and 3.0 ppm each, respectively. 
The Miller Lauria Broth was prepared by dissolving 1g of bacto-trypton, 0.5 g of bactoyeast 

extract and 0.5 g of NaCl (Merck). The reagents were put into an autoclave and sterilized, the rea-
gents were then mixed with freshly prepared 0.2 M glucose solution (prepared in deionized water) 
and pH was maintained to 6.8 to 7.1 using HCl/NaOH buffer and the filtrate was then incubated at 
25°C. The Bile ager was prepared according to manufacturer (Merck) instructions, by using ready 
to use powdered material. The pH was adjusted to 7.4 ± 0.1 using HCl and NaOH buffers. The 
medium was boiled for 2 minutes and then stored at 42 ± 2 °C before pouring into plates. 

The E. LB medium for Escherichia coli (E. coli)) was made to grow the bacterial colonies 
by combining 5 g of Miller's LB broth with 1000 mL of deionized water. E. coli (150 µL) were 
grown with 3 mL of LB media which was incubated for 3 hours at 160 rpm. Total. Coliforms (T.Col-
iforms) were cultured from bile ager at 37°C overnight. The bacterial population was presented as a 
colony-forming unit (CFU) value, which was obtained with customized 3M-Petrifilms using a col-
ony counter (Table ST-1). The initial concentration of the bacterial population was 100 colonies/mL. 
These colonies were further diluted with 10mL distilled water at first and then 1mL from this dilu-
tion is further diluted to 10mL of sterile water to obtain 102 dilution (1000mL dilution) to enumerate 
the concentration of both E. coli and T. coliforms. The decontaminating material was tested against 
E.coli (150 CFU/mg after 102 dilutions) and T.coliforms (200 CFU/mg after102 dilution). Thus, the 
reference concentrations of both  E.coli and T.coliforms were 150 CFU and 200 CFU before the 
addition of any de-polluting material. 

The spectrophotometer (UV-Visible V-760 (JASCO)) with a photomultiplier detector has 
been used for the kinetic studies on bacterial removal by AC-FeS. Time spectra were collected be-
tween 350 to 750 nm, and kinetic data was obtained at a wavelength of 510 nm to determine the 
pseudo-first-order rate constants. The rate constants obtained represent the average of three repli-
cated runs. 

 
 
3. Results and discussion 
 
Our synthesized precursor notably achieved the highest surface area recorded under our ex-

perimental conditions topping 1460 m²/g (Figure 1a), despite reports about similar works [31,32]. 
This increase in surface area enhanced its activity for nitrates (NO3

-) and fluorides (F-) removal, and 
gram-negative bacteria, when modified with FeS to form AC-FeS. 

The pore size distribution peaked at 3.3 nm and an average pore volume of 0.66 m³/g for 
AC-1 with a majority texture was microporous with shorter dwell time. In a similar context, Budi-
nova et al. reported analogous findings in their study on H3PO4-derived activated carbons, which 
had a surface area of 900 m²/g and a pore volume of 0.66 m³/g [33]. Furthermore, Srinivasan et al. 
examined the impact of plasma treatment on activated carbons  [34], reporting a minimal increase 
in the surface area from 415 m²/g to 425 m²/g following plasma treatment. The total pore volumes 
in these cases were 0.19 m³/g and 0.20 m³/g, respectively. 

  
 

Table 1. Surface area parameters for AC-1 and AC-FeS from gas sorption experiments. 
 

SBET (m2/g) Sext 
(m2/g) 

Smicro 
(m2/g) 

Pore volume  (m3/g) 
Vtotal                   Vmicro     Vmeso 

Rel-Pore volume           
Vmicro/Vtotal  Vmeso/Vtotal 

Avg. Pore  
Diame-
ter(nm) 

1460(AC-1) 703 757 0.66 0.30 0.36 45% 55% 3.3 
618(AC-FeS) 618 0 0.47 0 0.47 0% 100% 3.0 
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Table 1. demonstrates a consistent decrease in the surface area of activated carbons (AC-1), 
which aligns with the results obtained from thermogravimetric analysis (TGA) as detailed in Sup-
plementary Section S-2. To further investigate the morphology of the ACs, SEM analysis was em-
ployed. SEM images, as seen in Figure 1b, revealed that the majority of the particles were spherical, 
with an average size of 0.5 µm. Interestingly, the SEM analysis indicated that the particle morphol-
ogy was largely retained after heat treatment. It was observed that AC-FeS particles were not dis-
persed on the outer surface of the ACs. This observation was further corroborated by Energy Dis-
persive X-ray Spectroscopy (EDS) analysis, which confirmed the presence of iron, sulfur, and oxy-
gen in the synthesized material, as presented in Figure 1(c). 

 
 

 

 

 
 

Fig. 2. (a) N2 adsorption-desorption isotherm shows significant gas adsorption (mmol/g) by AC-1, which is 
used for antibacterial activity in wastewater. (b) SEM images of FeS-loaded activated carbons with 0.5µ 

size at high resolution showing no partical dispersion on the surfcae of material evidencing the infilteration 
of FeS in the activated material. (c) EDS mapping and TEM image of FeS-loaded activated carbons showing 
the compositional constitution of FeS-loaded activated carbons. (d) The X-ray diffractogram of amorphous 

activated carbons and FeS-loaded activated carbon. 
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Complementing these findings, pXRD analysis provided insights into the crystalline struc-
ture of the materials. The pXRD diffractogram, shown in (Figure 1d), indicated that AC-1 was pri-
marily amorphous in nature before being tailored with FeS for water decontamination purposes. 
Post-impgregnation, the AC-FeS samples exhibited distinct crystalline diffraction peaks character-
istic of FeS nanoparticles. Specifically, pXRD peaks for FeS were at 37.1°, 47.4°, 60.3°, and 69.1° 
were associated with the (111), (200), (210), and (311) reflection of the FeS nanoparticles, as per 
the JCPDS card No. 42-1340. These findings not only confirm the successful incorporation of FeS 
nanoparticles into the AC structure but also highlighted the transformation of the AC-FeS to a more 
crystalline state post-modification. 

The experiments were conducted under both static and dynamic conditions, utilizing 0.1g 
of FeS (from the micronpowder) and AC-FeS as sorbent materials. In dynamic conditions with a 
100mL water sample, the removal efficiencies achieved using FeS and AC-FeS were notably high: 
90% and 94% for nitrate (NO3

-), and 90% and 92% for fluoride (F-), respectively. In contrast, the 
precursor AC-1, when tested against fluoride and nitrate, exhibited only minimal adsorption of these 
ions in both static and dynamic settings. This difference in performance highlights the enhanced 
adsorption capabilities of AC-FeS, especially under dynamic conditions. Dynamic settings proved 
more effective due to the improved mixing of the sorbent material with the water, facilitating higher 
removal rates compared to static equilibrium [35].  

Figure 2. presents a comparative analysis of the results under both conditions for AC-1, FeS, 
and AC-FeS. Notably, the incorporation of iron functionality in the sorbents played a significant 
role in the removal efficiency. Iron sulfide, being in trace, exhibits a strong affinity towards both 
fluoride and nitrate ions, effectively scavenging these contaminants from the aqueous solution. 

 
 

 
 

Fig. 3. Comparative analysis of the results under Dynamic conditions for AC-1, FeS, and AC-FeS. Notably, 
the incorporation of iron functionality in the sorbents played a significant role in the removal efficiency of 

water contained contaminants.  
 
 
In this study, we synthesized modified activated carbons loaded with FeS nanoparticles 

(AC-FeS), demonstrating high efficacy in microbial decontamination. A review of the literature re-
veals various materials like graphene oxide, [36,37] modified silica, [38] metal oxide nanoparticles, 
[39] and activated carbons, [40] all possessing antibacterial characteristics. Specifically, our synthe-
sized AC-1 showed significant activity against gram-negative microbes, achieving 35% bacterial 
removal even without the addition of FeS NPs. Comparatively, Oya et al. reported similar decon-
tamination results using mesoporous activated carbon in freshwater. [41] Zhang et al. demonstrated 
enhanced antibacterial activity in wastewater systems using ACs loaded with silver nanoparticles 
(Ag-NPs). [42] Other studies have also confirmed the antibacterial behavior of metal oxide and 
metal sulfide nanoparticles. [43] 

 
To explore this further, we impregnated FeS NPs into ACs and tested their bacterial removal 

efficacy. AC-FeS, applied to communal waters contaminated with T. coliforms and E. coli, showed 
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improved decontamination effectiveness (see Supplementary Text ST-1). The iron sulfide nanopar-
ticles were particularly effective, achieving a 99% removal rate for gram-negative bacteria, in line 
with literature findings. [44,45]  Our approach, using AC-1 as a raw waste starting material, proved 
more effective and economical. The functional groups in the synthesized material, evidenced by 
Raman spectroscopy, contributed to its efficiency. The material-maintained its decontamination ef-
fectiveness for up to six cycles, though some decrease in depolluting activity was noted (see Sup-
plementary Information SI). The comparative decontamination results for AC1, FeS, and AC-FeS 
are depicted in Figures 3(a) and (b). 

 
 

 
 

Fig. 4. (a). Response of T. Coliforms vs time (a) and E.Coli vs time (b) after adding 0.1g of AC-1, FeS and 
AC-FeS, respectively. 

 
 
The antibacterial mechanism is attributed to the sulfide moiety in FeS, which disrupts bac-

terial genomes and induces bacterial inactivation. [44,45]   Pachaiappan et al., investigated the anti-
bacterial effects of metal (MoS) sulfide nanoparticles in water treatment,[46] and Roy et al., who 
explored the antibacterial activity of CuS NPs in wastewater. [21] Li et al. and Ajibade et al. have 
also reported successful bacterial decontamination using FeS nanoparticles.[47,48]. Our study aligns 
with these findings, showing a consistent decrease in bacterial colonies using FeS NPs. However, 
when FeS is combined with the sustainable AC-1 to form AC-FeS, we observed an even greater 
antibacterial efficacy. This improvement could be attributed to factors such as surface functional 
groups like acids, aldehydes, and lactones [49,50], which enhance the material's decontamination 
activity in aqueous conditions. In our material too these groups are evidenced in IR-spectrograph 
(see SI) which show the presence of acid and carbonyl functional groups. Remarkably, our AC-FeS 
material achieved 100% antibacterial activity against T. coliforms and E. coli. Using 0.1 g of AC-
FeS in 1 ml of contaminated water, we monitored the decontamination process, observing a gradual 
but complete elimination of both bacterial strains within 6 hours. 
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Table 2. Comparison of the removal percentages of Bacteria and Anions to the literature values. 
 

Material Type Contaminant Medium/Removal  Ref 

Cu2S NPs  Bacteria  Water (90%) 
[51] 

 FeS nanoparticles  Bacteria Water [21] 

Metal sulfide particles Gram Negative Bacte-
ria 

Water (80%) [48] 

FeS NPs  Gram Negative Bacte-
ria 

Water [52] 

AgO Nanoparticles  Gram Negative Bacte-
ria 

Water (0.03%) [53] 

ZnO Nanoparticles Bacteria Water (52%) [54] 

FeO NPs NO3
- Water (>90%) [55] 

CeO NPs F- Water (>90%) [56] 

 
 
A key feature of the activated carbon was its substantial specific surface area of 1460 m²/g, 

that helped towards the enhanced antibacterial activity of the material under study along with the 
removal of F – and NO3

- from drinking water. While numerous studies have explored the antibacterial 
activities of modified ACs, this study distinctively highlights the enhanced pollutants removal 
capacity of AC-FeS from water, attributed to the effective impregnation of FeS within the ACs. 

We investigated the kinetics of antibacterial activity using AC-FeS at a pH of 7.1 and tem-
perature of 25°C, employing spectral measurements for analysis. The kinetics data revealed that the 
decontamination process conformed to the Langmuir kinetic model, evidenced by the data's good fit 
to a single exponential decay function, as shown in te (Figure 4). 

 
 

 
 

Fig. 5. Antibacterial kinetic curves for E. coli and T.coliforms  degradation (CFU/mL) of bacterial cells. 
 
 
The rate constants (K2) were determined at various time intervals and were subject to non-

linear curve fitting in Figure 4, with the corresponding R² values provided in Table 3. These high 
regression factors indicate that the decontamination adhered closely to the standard kinetics de-
scribed by the Langmuir model, confirming the efficiency and predictability of the AC-FeS in bac-
terial removal under these conditions. 
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Table 3. Langmuir constants for antibacterial activity of gram-negative bacteria on activated  
Carbons. 

Modified AC CFU (mL) Qmax (mg/g) K2 R2 

AC-FeS 
T. coliforms 199 0.41 0.98 

E. coli 148 0.20 0.99 
 
 
4. Conclusion 
 
In this study, we successfully prepared hierarchical activated carbons (ACs) with micro and 

mesoporous texture and a very high surface area (1460 m2/g). The AC was then post synthetically 
immobilized with FeS nanoparticles to afford AC-FeS. Detailed material characterization confirmed 
the incorporation of FeS, along with the presence of O2- and OH-1 functionalities (through IR). This 
material demonstrated remarkable efficiency in removing F-, NO3

-, and decontamination activity of 
gram-negative bacteria from drinking water. The optimized removal achieved were 90% and 94% 
for NO3

- and F-, respectively, using FeS and AC-FeS in water sample. In contrast, AC-1 showed 
only minimal de-ionization activity. Notably, the material achieved complete (100%) bacterial re-
moval within 6 hours. The findings of this research indicate a promising approach for the removal 
of both microbial and inorganic pollutants from drinking water, thereby contributing significantly 
to water purification technology.  
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