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Thin film nanocrystalline silicon has been widely investigated since the last decade 
because of its attractive opto-electronic properties. Solar cell based on this material is 
stable upon prolonged exposure to light and also absorbs energy of the solar spectrum up 
to the near infra red region. These features have led to its use in tandem with an 
amorphous silicon top cell for enhanced solar cell performance in the so-called 
micromorph solar cell. This paper investigates using advanced semiconductor analysis 
(ASA) simulation the use of buffer layer at the p-i interface of a superstrate 
nanocrystalline silicon solar cell and how this affects the solar cell performance. The p-i 
interface is critical to solar cell performance because it is a defect-rich region and band-
gap offset is likely here. The use of buffer layers therefore reduces this band-gap offset. 
For this work we have tested the potential of using p-doped nanocrystalline silicon layer 
and a p-type amorphous silicon carbide as p-i interface buffers.  Our results show that the 
effect of buffer layer depends on the material used, its band gap and thickness. Using a p-
type nc-Si:H buffer yields no significant effect on the performance parameters of the solar 
cell for all the band gap and thickness ranges investigated. On the other hand, an 
amorphous silicon carbide buffer of suitable thickness significantly increases solar cell 
performance parameters.   
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1. Introduction 
 
Thin film-based solar cells have generally received a lot of attention in recent times and 

have been considered the most widespread alternative to bulk crystalline solar cell [1]. This 
interest is based on the low material consumption, the relatively low cost and large-area deposition 
possibilities at relatively low substrate temperature [1-3]. This low temperature deposition offers 
the possibility to produce flexible and light-weight solar panels which can be used to cover the 
roof of factory buildings for instance. Deposition at low temperature allows for the use of cost-
effective substrate materials such as glass, stainless steel and plastic.  

Thin film nanocrystalline silicon evolved first as thin film microcrystalline silicon, µc-
Si:H and later into what is today thin film nanocrystalline silicon. First µc-Si:H layers were 
deposited by Veprek and Marack [4]. In 1979 Usui and Kikichi [5] doped the first microcrystalline 
layer using strongly hydrogen-diluted silane in a plasma induced microcrystalization at a 
deposition rate of less than 10-3 nm/s. The first substrate and superstrate-type solar cells of entirely 
thin film nanocrystalline layers with efficiency above 7% were made at the Université de 
Neuchâtel in 1996 [6]. Since then, research effort has been put into utilizing and optimizing the 
inherent advantages of this cell such as its stability against light-induced degradation and the 
extension of its spectral response to the near infrared light region. Today, thin film nanocrystalline 
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solar cells are used as bottom cell in tandem and triple junction cells. In tandem cells, they are 
particularly used as the bottom cell to collect the less energetic photons transmitted through the top 
cell and to aid tunnel/recombination junctions that form the connection between individual cells. 
The absorption of the nc-Si:H material covers also the near infra red region of the solar spectrum 
(up to wavelengths of 1100 nm) and its band gap (Eg ≈ 1.1 eV) make it a near-perfect match for 
amorphous silicon/nanocrystalline silicon tandem (micromorph) solar cell. Its low absorption at 
this spectral region (see figure 1) requires a relatively thick absorber layer and an efficient light 
trapping scheme for sufficient current generation to ensure current matching in the tandem cell. 

The interface between the p-type and the intrinsic nc-Si:H layers have been long  known 
as a sensitive interface which can affect solar cell performance [7]. Being an interface for two 
materials of different band gap, the issue of band gap offset always arises and this effect is linked 
to charge carrier extraction losses. Because of the different conditions under which these two 
layers are deposited, carrier transport through the interface can be difficult to predict. Large defect 
concentrations have been shown to dominate this region [8]. This paper presents a theoretical 
investigation into the use of buffer layers as a solution to the problems related to the p-i interface.  
The aim is to further understand how different buffer materials and their properties can affect nc-
Si:H solar cell performance.  
 

 
 

Fig. 1. The absorption as a function of wavelength of thin film nanocrystalline silicon compared to that  
of a-Si:H. The band gaps, Eg, of the two materials are shown. 

 
 

2. Materials and method 
 
The work reported here is based on both experimental and theoretical investigation. The 

experimental part involved the deposition of thin film nanocrystalline silicon layers and solar cells 
and the amorphous silicon carbide layer. These depositions were done in the radio frequency 
plasma enhanced chemical vapor deposition  (rf PECVD) facility at the Delft University of 
Technology, Netherlands. The deposited experimental single layers and solar cells were 
characterized and their parameters used as input to calibrate the simulation model, ASA. Advanced 
Semiconductor Analysis (ASA) is a one-dimensional simulation program developed by the solar 
cell group of the Delft University of Technology, the Netherlands. It was originally designed for 
the simulation of multilayered heterojunction device e.g. a-Si:H solar cell and has recently been 
updated for use in single junction nanocrystalline solar cell and optical systems with multi-rough 
interfaces. 
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the figures below. For the structure we investigated, the p-type nc-Si:H buffer layer had no 
observable effect on the solar cell performance.  
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(b) 
Fig. 4. IV characteristics of nc-Si:H solar cells for varying p-type nc-Si:H (a) buffer layer 

 thickness (b) buffer layer mobility gap. 
 

Fig. 5 shows the effect of using amorphous silicon buffer layer. Here we observe a 
significant effect on the external parameters of the solar cell. The open circuit voltage and the 
short-circuit current show 27% and 9% increase respectively with respect to the reference cell 
without a buffer. This significant effect of the buffer layer on the Voc relates to the fact that with 



578 
 
the buffer, the defect concentration is reduced and the band-gap offset is controlled hence leading 
to increase in the open circuit voltage. The increase in current is a direct reflection of improvement 
in charge carrier extraction across the interface. Notice also from table 1 that the fill factor is 
reduced significantly but overall, the efficiency of the solar cell is increased by 5%.  
 

Table 1. External parameters of nc-Si:H without (reference) and with a-Sic buffer layers of 2 and 4 nm 
thickness. 

 
Parameter  Reference value a-SiC_4nm a-SiC_2nm 
Jsc (A/m2) -172.7 -184.9 -188.0 
Voc (V) 0.4774 0.6045 0.5359 
FF 0.6095 0.4108    0.5233    
Efficiency (%) 5.026 4.5910 5.2720 
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Fig. 5. Quantum efficiency of nc-Si:H solar cells without/with aSiC buffer  layers of  2 and 4 nm thickness 

 
4. Conclusions 
 
The effect of p-i interface quality on the performance of thin film nanocrystalline silicon 

solar cell has been investigated. We have used both experimental and theoretical approach to show 
that the defect-rich p-i interface reduces the quantum efficiency of the solar cell especially at the 
short wavelength region. We tested the effect of inserting a buffer layer as a measure to reduce 
defects and band-gap offset effects at p-i interface. P-type nanocrystalline silicon and amorphous 
silicon carbide were implemented as buffer layers for different thicknesses and mobility gaps. Our 
result clearly shows that using a nanocrystalline silicon p-type buffer layer does not change the p-i 
interface quality. On the other hand, we have shown that the use of amorphous silicon carbide p-i 
interface buffer can significantly increase spectral response of nanocrystalline silicon solar cell due 
to increased carrier extraction. However, more theoretical and experimental work will be needed to 
further optimize the amorphous silicon carbide buffer layer.   
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