# Electronegativity, susceptibility, and radiation shielding features of thulium reinforced barium-cadmium-lithium-borate glasses

B. M. Alotaibi<sup>a</sup>, Thaqal M. Alhuzaymi<sup>b</sup>, Mohammed. F. Alotiby<sup>b</sup>, Sayed. A. Makhlouf<sup>c</sup>, Kh. S. Shaaban<sup>d</sup>, E. A. Abdel Wahab<sup>c,\*</sup> <sup>a</sup>Physics Department, College of Science, Princess Nourah bint Abdulrahman University. P.O. Box 84428, Riyadh 11681, Saudi Arabia <sup>b</sup>Nuclear Technologies Institute (NTI), King Abdulaziz City for Science & Technology (KACST), P. O. Box 6086, Riyadh, 11442, Saudi Arabia <sup>c</sup>Physics Department, Faculty of Science, Al-Azhar University, Assiut, P.O 71524, Egypt <sup>d</sup>Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, P.O 71524, Egypt

The chemical composition of the following glass system  $75Li_2B_4O_7$ -10CdO-(15-x)BaOxTm<sub>2</sub>O<sub>3</sub> ( $0 \le x \le 2$ ) mol.% has been fabricated using a traditional melt quenching procedure. The density of the synthesis samples has been measured and it enhanced with the rising Tm<sub>2</sub>O<sub>3</sub> content. All the fabricated specimens form glass and the amorphous state have been confirmed the XRD. The spectroscopic investigation indicates an increase in the energy gap from 3.08 to 3.25 eV with increasing Tm<sub>2</sub>O<sub>3</sub> concentrations. The refractive index, basicity and static and infinity of dielectric constant were taken place of present investigated. The ultrasonic velocities of the prepared glasses are increased. Consequently, the elastic modulus of glasses has been enhanced. MCNP5, XCOM, and Phy-X/PSD code were used to characterize the efficiency of the fabricated glass against gamma radiation. Indeed, an increase in Tm<sub>2</sub>O<sub>3</sub> content in samples correlated with an increase in MAC values. Consequently, the gamma-radiation attenuation rate of the samples was enhanced by the addition of Tm<sub>2</sub>O<sub>3</sub>, and the protective qualities were improved.

(Received May 14, 2024; Accepted August 2, 2024)

Keywords: Electronegativity, Susceptibility, Elastic modulus, MCNP5

# 1. Introduction

Glasses doped rare-earth ion (REI) like  $Er^{3+}$ ,  $Tm^{3+}$ ,  $Gd^{3+}$ ,  $Sm^{3+}$  and  $Nd^{3+}$  are widely researched because of their enormous infrared laser applications [1-6]. Particularly, glasses doped  $Tm_2O_3$  were extensively researched for application in advanced manufacturing [7]. Lithium-borate glasses are comparatively cheap and stable, with good mechanical characteristics [8-12]. Alkali and alkaline earth lithium-borate glasses including rare earth and transition metal oxides can dissolve huge amounts of various other oxide species [13-16].

Therefore, the presence of CdO in lithium-borate glasses as a glass modifier or an intermediate oxide provides numerous beneficial effects, such as doping with (REI) in an extensive variety, increasing chemical durability and strength to devitrification [17-18]. The introduction of BaO to the glass system  $Li_2O-B_2O_3$ -CdO increases the mechanical strength and makes it stable both in air and moisture conditions [19]. BaO and CdO incorporate glasses that have many particular aspects that are of significance to their applications, which are also used for the production of optical and radiation glasses [17-19]. Numerous scientists have developed  $Li_2B_4O_7$  glasses that include BaO and CdO.

 $Li_2B_4O_7$  - BaO - CdO - Tm<sub>2</sub>O<sub>3</sub> glasses also attach great importance to their mechanical and radiation properties. The existence of Tm<sub>2</sub>O<sub>3</sub> to  $Li_2B_4O_7$  - BaO– CdO (BBLC) glasses plays an increasing role in broadening the characteristics of these glasses. (BBLC) glasses doped with Tm<sub>2</sub>O<sub>3</sub> have greater applications across several regions, caused by chemical stability, low melting point, high density, excellent mechanical strength, shield protect radiation, and good

transmission of FT-IR. The mechanical and radiation properties of the  $Li_2B_4O_7$  - BaO - CdO -  $Tm_2O_3$  glasses were discussed in this research paper. A pulse-echo procedure will be used for the estimation of the mechanical properties of these samples [20-25].

Different simulation and theoretical programs, such as MCNP5, XCOM, Phy-X/PSD, and Phy-X/Extra, can be used to calculate radiation shielding parameters. Monte Carlo simulations can be used to simulate a statistical process in theory (such as the interaction of photons or nuclear particles with materials).

For the fabricated glass system, optical, and mechanical measurements are investigated. MCNP5, XCOM, Phy-x/PSD, and Phy-X/Extra are used to characterize the shielding capability of the fabricated glasses against photons, fast neutrons and charged particles respectively.

Samples code: BBLC<sub>0</sub>:  $0.75Li_2B_4O_7+0.15BaO+0.1CdO$ ; BBLC<sub>0.5</sub>:  $0.75Li_2B_4O_7+0.145BaO+0.1CdO+0.005Tm_2O_3$ ; BBLC<sub>1</sub>:  $0.75Li_2B_4O_7+0.14BaO+0.1CdO+0.01Tm_2O_3$ ; BBLC<sub>1.5</sub>:  $0.75Li_2B_4O_7+0.135BaO+0.1CdO+0.015Tm_2O_3$  and BBLC<sub>2</sub>:  $0.75Li_2B_4O_7+0.13BaO+0.1CdO+0.02Tm_2O_3$ .

# 2. Materials and methods

The fabrication of the present glass samples can be found in Ref. [2]. The composition of  $75Li_2B_4O_7$ -(15-x) BaO-10CdO-xTm<sub>2</sub>O<sub>3</sub>, was used as listed in Table 1 with the following equation:

$$(\text{Li}_2\text{CO}_{3+}\text{H}_3\text{BO}_3) + \text{BaO} + \text{CdO} + \text{Tm}_2\text{O}_3 \frac{\Delta \text{ at } 600\ ^\circ \text{C}}{6H2O + CO2}}{\text{glasses}} \longrightarrow [\text{Li}_2\text{O} + \text{B}_2\text{O}_3 + \text{BaO} + \text{Tm}_2\text{O}_5 + \text{CdO}] \xrightarrow{\Delta \text{ 1050\ }\circ \text{C}}{\text{glasses}} \text{glass} \text{ samples.}$$

The densities ( $\rho$ ) of the examined glasses were calculated using the Archimedes principle. Molar volume can be calculated using:

$$V_m = M/\rho. \tag{1}$$

The optical features were registered by Jasco 670 Instrument Japan. The transmission and absorption were recorded from 200 nm to 2000 nm.

| Sample name         | Chemical Composition |     |      |                                |  |
|---------------------|----------------------|-----|------|--------------------------------|--|
|                     | $Li_2B_4O_7$         | CdO | BaO  | Tm <sub>2</sub> O <sub>3</sub> |  |
| $BBLC_0$            | 75                   | 10  | 15   | 0                              |  |
| BBLC <sub>0.5</sub> | 75                   | 10  | 14.5 | 0.5                            |  |
| BBLC <sub>1</sub>   | 75                   | 10  | 14   | 1                              |  |
| BBLC <sub>1.5</sub> | 75                   | 10  | 13.5 | 1.5                            |  |
| BBLC <sub>2</sub>   | 75                   | 10  | 13   | 2                              |  |

Table 1. Chemical composition of BBLC glasses (mol %).

A pulse-echo procedure was examined (model 1085 of the KARL DEUTSCH Echograph) for mechanical measurements.

longitudinal modulus, 
$$L = \rho v_l^2$$
, (2)

shear modulus, 
$$G = \rho v_s^2$$
, (3)

584

Young's modulus, 
$$Y = (1 + \sigma)2G$$
, (4)

Bulk modulus, 
$$K = L - \left(\frac{4}{3}\right)G$$
 (5)

The theoretical calculation of the elastic moduli by dissociation energy and packing density [30,31] is as:

$$V_{i} = \left(\frac{3\pi}{4}\right) NA \{ mR_{m}^{3} + n R_{i}^{3} \}$$
(6)

Poisson's ratio, 
$$\sigma = \frac{1}{2} - \left(\frac{1}{7.2^*}\right)$$
 (7)

Micro Hardness 
$$H = \frac{(1-2\sigma)Y}{6(1+\sigma)}$$
 (8)

Debye temperature, 
$$\theta_D = \frac{h}{k} \left(\frac{9N}{4\pi V_m}\right)^{\frac{1}{3}} M_s$$
 (9)

Average of ultrasonic velocities 
$$M_s = \frac{1}{3} \left(\frac{\frac{2}{v_T^3}}{\frac{1}{v_l^3}}\right)^{\frac{1}{3}}$$
 (10)

Thermal Expansion  $\alpha_{P=23.2 (v_L-0.57457)}$  (11)

Oxygen molar volume 
$$V_o = \left(\frac{M}{\rho}\right) \left(\frac{1}{\sum xini}\right)$$
 (12)

Oxygen packing density 
$$OPD = \left(\frac{1000 C}{Vm}\right) \left(\frac{Mol}{L}\right)$$
 (13)

The MPNC5 program software was used to simulate the value of the gamma intensity before and after the glass specimens. The XCOM program, on the other hand, is a user-friendly calculation that is based on near beam. The mass attenuation coefficient ( $\mu/\rho$ ) is the output of XCOM, while the sample composition is the input [26,27]. The Phy-X is a simple process for computing more than ten different parameters in a short time [28-29].

The gamma is attenuated when it passes through the absorbent material. The linear attenuation coefficient (LAC) is estimated by the Lambert-Beer [26]:

$$I = I_0 e^{-\mu x} \tag{14}$$

where  $I_o$  represents the measured  $\gamma$ -ray without the sample and I is the  $\gamma$ -ray intensity after the sample, and the sample thickness is x (cm). The mass attenuation coefficient ( $\mu/\rho$ ) estimated as:

$$\mu_{mass} = \mu/\rho \tag{15}$$

Radiation protection efficiency (RPE), is an important parameter for radiation protection and can be calculated by the following equation [27,28]:

RPE = 
$$(1 - \frac{l_0}{l}) \times 100$$
 or RPE =  $(1 - FT) \times 100$ , where FT =  $\frac{l}{l_0}$ , (16)

(TF) is the transmission factor.

Effective atomic number:

$$Z_{eff} = \sigma_a / \sigma_e, \tag{17}$$

Effective electron density:

$$N_{eff} = MAC / \sigma_e \tag{18}$$

Total atomic cross-section:

$$\sigma_{a} = (1 / N_{A}) \sum f_{i} A_{i} (MAC)_{I}$$
(19)

Total molecular cross-section:

$$\sigma_{\rm m} = (\mu/\rho) \, ({\rm M} / {\rm N}_{\rm A}) \,, \ \sigma_{\rm m} = \, (1 / {\rm N}_{\rm A}) \sum n_{\rm i} \, {\rm A}_{\rm i} \, (\,{\rm MAC})_{\rm I}, \tag{5}$$

Total electronic cross-section [29,30],

$$\sigma_{\rm e} = (1 / N_{\rm A}) \sum \frac{f_{\rm I} A_{\rm I}}{z_{\rm I}} (MAC)_{\rm I}$$
<sup>(20)</sup>

where N<sub>A</sub> is Avogadro's number.

Half and tenth value layers can be determined as:

$$HVL = 0.693 / \mu,$$
 (21)

$$TVL = 2.303 / \mu$$
 (22)

Mean free path:

$$MFP = 1/\mu \tag{23}$$

These parameters are very important in radiation shielding [30, 31].

# 3. Results and discussion

#### 3.1. Physical investigation

An XRD of the glass samples is exemplified in Fig. 1. It can be deduced that a high level of glassiness state, the presence of a small hill at  $15 \sim 30^{\circ}$ , and the absence of sharp peaks and discrete lines.



Fig. 1. XRD pattern of BBLC glasses doped Tm<sup>+3</sup>.

There are two main reasons for increasing the density of our glass system. The first is the density difference between the two oxides BaO and  $Tm_2O_3$  (5.72, 8.6), The second is the change in the mass of molecules, (153.326, 385.867) [32-36]. The values of correlation between both ( $\rho$ ) and

 $V_m$  is listed in Table 2. It is seen the inverse proportionality between them. The oxygen molar volume of present glass has been computed and the values were written in Table 2. The oxygen packing density (OPD) was estimated and it is presented in Table 2. It is seen that that the OPD increase with increase Tm<sub>2</sub>O<sub>3</sub> concentration.

| Samples                                                         | BBLC <sub>0</sub> | BBLC <sub>0.5</sub> | BBLC <sub>1</sub> | BBLC <sub>1.5</sub> | BBLC <sub>2</sub> |
|-----------------------------------------------------------------|-------------------|---------------------|-------------------|---------------------|-------------------|
| Glass Density (g/cm <sup>3</sup> )                              | 3.62              | 3.84                | 3.97              | 4.19                | 4.91              |
| Glass molar volume (cm <sup>3</sup> )                           | 32.45             | 30.90               | 30.18             | 28.87               | 24.87             |
| Oxygen molar volume (cm <sup>3</sup> )                          | 8.77              | 8.33                | 8.11              | 7.74                | 6.65              |
| Oxygen packing density (OPD)                                    | 114.0             | 120.1               | 123.3             | 129.2               | 150.4             |
| Ions conc. (N <sub>i</sub> ) ( $10^{21}$ ions/cm <sup>3</sup> ) | 0                 | 0.49                | 1.0               | 1.57                | 2.42              |
| Inter-nuclear distance, $r_i$ (Å)                               | 0                 | 12.7                | 10.0              | 8.61                | 7.44              |

Table 2. Structural characteristics of BBLC glasses.

### 3.2. Spectroscopic characteristic

The Spectrum of the fabricated glass samples is analyzed between 200 and 2000 nm. Tauc's plot is designed to obtain the optical band gap which measures the energy required to excite an electron from the valence band to the conduction band of a material. The optical band gap of the 75Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub>- (15-x) BaO-10CdO-xTm<sub>2</sub>O<sub>3</sub> ( $0 \le x \le 2$ ) mol% glass system was increased from 3.08 eV to 3.25 eV [2] with rise thulium content as described in Table 3. The increase in band gap can be credited to the incorporation of Tm<sub>2</sub>O<sub>3</sub> into the glass matrix. Tm<sub>2</sub>O<sub>3</sub> is a trivalent lanthanide oxide with a relatively high electronegativity (2.207) [37]. This high electronegativity causes Tm<sub>2</sub>O<sub>3</sub> to donate electrons to the glass network, leading to an increase in the average bond strength and a corresponding increase in the optical band gap. As a findings, the top energy of valance levels pushed down, which decreased the center of electron doner ln the network of glasses and can enhance the band gap [38]. A wider band gap indicates that the material is less transparent to visible light and more transparent to infrared light. This property makes Tm<sub>2</sub>O<sub>3</sub>-doped glasses attractive for applications such as infrared optical components. The following connection is used to estimate the retroactive index (n) of the fabricated sample as a function of the band gap energy:  $n^2 = \sqrt{\frac{180}{-2}}$ , and for other equations can be found in the bibliography as

band gap energy:  $n^2 = \sqrt{\frac{180}{E_g}} - 2$ , and for other equations can be found in the bibliography as [39-44].



Fig. 2. Refractive index depending on indirect energy gap molar volume of BBLC glasses doped Tm<sup>+3</sup>.

The refractive index decreases as the energy gap increases as ascribed in Fig. 2. So, the highest n of the fabricated glass sample is  $BBLC_0$  and decreased with increased  $Tm_2O_3$ concentration in the glass, which suggests that reducing in non-bridges oxygen formation. Other optical parameters have been estimated upon optical energy gap and refractive index as,  $R_L$ ,  $\alpha_m$ ,  $\alpha_o$ ,  $E_{e-ph}$ ,  $\varepsilon_{o}$ ,  $\varepsilon_{\infty}$  and  $\chi^{(1)}$ , [45-51] their values are scheduled in Table 3. It is perceived that as the concentration of Tm<sup>+3</sup> ions increase these parameters declined. This could be due to the creation of bridging oxygen in the glass matrix which leads to an increase in the ratio of BOs to NBOs. Also, Metallization criteria M, Basicity A, Transmission coefficient (T) and cohesive energy have been established. It is obvious that these parameters increase with rise the Tm<sup>+3</sup> ions in the glass system. This could be because an increase in BOs in the glass system causes optical basicity to drop. Increased polarizability strengthens the capability of oxide ions to transport the negative charge. This shows that Tm0 has the highest ability to transfer electrons as compared to other glasses. As Tm<sub>2</sub>O<sub>3</sub> concentration rises from 0 to 1.5 mol%, the values of other optical properties like nonlinear optical susceptibility  $(\chi^{(3)})$  and nonlinear refractive index (n2) decrease. These variables have a direct relationship to the energy gap values and are explored in Fig. 3. The drop in non-bridging oxygen, which improves the energy band gap, could be the source of the declining behavior of these factors. The values recommend that the current glasses are an extremely effective option for non-linear applications of optical instruments [52].

Some parameters like optical energy gap, index refractions index, molar reflectivity Polarizability of cation ( $\alpha_{cat}$ ), Oxide ion polarizability( $\alpha_{O2-}$ ), Molar Refractivity R<sub>m</sub> (cm<sup>3</sup>/mol), and Molar Polarizability  $\alpha_m$  (A<sup>°3</sup>) have been designed theoretically from theoretical optical basicity. Their values are tabulated in Table 3. As can be seen, these factors in some cases follow the same trends but their magnitude differs from one factor to the other.



*Fig. 3.* Nonlinear optical susceptibility, refractive index of BBLC glasses doped Tm<sup>+3</sup>.

| Samples                                                     | BBLC <sub>0</sub> | BBLC <sub>0.5</sub> | BBLC <sub>1</sub> | BBLC <sub>1.5</sub> | BBLC <sub>2</sub> |
|-------------------------------------------------------------|-------------------|---------------------|-------------------|---------------------|-------------------|
| Oxygen packing density (OPD)                                | 114.0             | 120.1               | 123.3             | 129.2               | 150.4             |
| Indirect optical band gap (eV)                              | 3.08              | 3.11                | 3.19              | 3.25                | 3.16              |
| Refractive index (n <sub>ind)</sub> (average)               | 2.39              | 2.38                | 2.36              | 2.34                | 2.37              |
| Molar Refractivity R <sub>m</sub> (cm <sup>3</sup> /mol)    | 1.504             | 1.505               | 1.507             | 1.509               | 1.511             |
| Molar Polarizability $\alpha_m$ (A <sup>o3</sup> )          | 7.821             | 7.423               | 7.189             | 6.835               | 5.944             |
| Metallization criterion (M)                                 | 0.392             | 0.394               | 0.399             | 0.403               | 0.397             |
| Reflection loss (R <sub>L</sub> )                           | 0.166             | 0.165               | 0.162             | 0.160               | 0.163             |
| Transmission coefficient (T)                                | 0.715             | 0.717               | 0.721             | 0.724               | 0.719             |
| Electronic polarizability( $\alpha_o$ )                     | 2.755             | 2.748               | 2.728             | 2.714               | 2.736             |
| Optical basicity (^)                                        | 1.286             | 1.282               | 1.271             | 1.263               | 1.275             |
| Steepness (S)                                               | 0.073             | 0.083               | 0.076             | 0.082               | 0.056             |
| Electron phonon interaction (E <sub>e-ph</sub> )            | 9.16              | 8.00                | 8.72              | 8.18                | 11.91             |
| Static refractive index no                                  | 2.38              | 2.37                | 2.35              | 2.33                | 2.36              |
| Static dielectric constant $\varepsilon_o$                  | 9.03              | 8.94                | 8.69              | 8.51                | 8.79              |
| Infinity dielectric constant $\varepsilon_{\infty}$         | 6.89              | 6.84                | 6.73              | 6.65                | 6.77              |
| Linear dielectric susceptibility $\chi^{(1)}$               | 0.370             | 0.367               | 0.359             | 0.354               | 0.362             |
| Nonlinear susceptibility $\chi^{(3)} \times 10^{-12}$ (esu) | 0.245             | 0.239               | 0.225             | 0.216               | 0.23              |
| $n_2 \times 10^{-12} (esu)$                                 | 3.88              | 3.81                | 3.62              | 3.48                | 3.69              |
| Cohesive energy CE(kcal/mol)                                | 32.12             | 32.26               | 32.62             | 32.89               | 32.48             |
| Cohesive energy CE(eV/atom)                                 | 1.40              | 1.41                | 1.42              | 1.44                | 1.42              |

Table 3. Various optical parameters of investigated glasses calculated based on optical bandgap.

#### 3.3. Mechanical properties

The velocities of the glass samples were exemplified in Fig.4. With the rise in  $Tm_2O_3$  content, both velocities are increased and represented in Table 4. [53-55]. Arrange the  $v_L$  between 4970, 5125m/s and  $v_T$  2760, 2850 m/s. According to the previous FTIR analysis [2], the position of the band shifted to a higher wavenumber, which led to increased connectivity of the glass network.



Fig. 4.  $v_L$  and  $v_T$  of BBLC glasses doped  $Tm^{+3}$ .

In Figs. 5&6 elastic moduli are exemplified with  $Tm_2O_3$  content (experimentally and theoretically). Rising in the  $Tm_2O_3$  content increases the elastic modulus values. This conduct is

correlated to the change in the amount of coordination with the increase in  $Tm_2O_3$  and the increase in average force and cross-link density.  $V_m$  reduces as  $Tm_2O_3$  rises at the expense of BaO, and as the density rises, the glass structure becomes more compact. The conclusions of the data are represented in Table 5.

| Samples                                                     | BBLC <sub>0</sub> | BBLC <sub>0.5</sub> | BBLC <sub>1</sub> | BBLC <sub>1.5</sub> | BBLC <sub>2</sub> |
|-------------------------------------------------------------|-------------------|---------------------|-------------------|---------------------|-------------------|
| Optical band gap (Egth.) eV                                 | 5.23              | 4.70                | 4.43              | 3.96                | 2.50              |
| Refractive index(n <sub>th</sub> )                          | 1.97              | 2.05                | 2.09              | 2.18                | 2.547             |
| Optical basicity ( $\Lambda_{th}$ )                         | 0.6075            | 0.6081              | 0.6087            | 0.6093              | 0.6099            |
| Polarizability of cation ( $\alpha_{cat}$ )                 | 0.0143            | 0.0145              | 0.0148            | 0.0153              | 0.0163            |
| Oxide ion polarizability( $\alpha_0^{2-}$ )                 | 1.572             | 1.573               | 1.574             | 1.574               | 1.575             |
| Molar Refractivity R <sub>m</sub><br>(cm <sup>3</sup> /mol) | 15.865            | 15.919              | 15.974            | 16.029              | 16.084            |
| Molar Polarizability $\alpha_m$ (A <sup>o3</sup> )          | 6.296             | 6.317               | 6.339             | 6.361               | 6.382             |

Table 4. Various optical parameters of investigated glasses calculated based on Theoretical optical basicity.

Mechanical factors result (*Vi*), (*Gi*), (*H*), ( $\alpha_P$ ), (*Z*), (*O*<sub>*PD*</sub>), (*Vo*), and ( $\sigma$ ) are mentioned in Table 6. The glass network structure is correlated with this behavior. (*Vi*), (*H*), ( $\alpha_P$ ), (*Z*), (*O*<sub>*PD*</sub>), (d), (*Gi*) and ( $\sigma$ ) values are raised with an increase in the content of Tm<sub>2</sub>O<sub>3</sub>.

Table 5. The values of sound velocities (m/s), and elastic moduli(GPa) of BBLC glasses.

| Sample              | $V_L$ | $V_T$ | L      | G     | K     | Y     | L <sub>M</sub> | G <sub>M</sub> | K <sub>M</sub> | Y <sub>M</sub> |
|---------------------|-------|-------|--------|-------|-------|-------|----------------|----------------|----------------|----------------|
| name                |       |       |        |       |       |       |                |                |                |                |
| BBLC <sub>0</sub>   | 4970  | 2760  | 89.42  | 27.58 | 52.65 | 70.43 | 68.32          | 39.78          | 30.1           | 79.91          |
| BBLC <sub>0.5</sub> | 5015  | 2795  | 96.58  | 30.00 | 56.58 | 76.48 | 72.19          | 44.25          | 31.4           | 86.12          |
| BBLC <sub>1</sub>   | 5065  | 2815  | 101.85 | 31.46 | 59.90 | 80.32 | 74.35          | 46.77          | 32.15          | 89.64          |
| BBLC <sub>1.5</sub> | 5090  | 2835  | 108.55 | 33.68 | 63.65 | 85.88 | 78.16          | 51.58          | 33.44          | 96.16          |
| BBLC <sub>2</sub>   | 5125  | 2850  | 118.46 | 36.63 | 69.61 | 93.50 | 83.75          | 59.26          | 35.32          | 106.35         |

Table 6. The Values of, (Vi), (Gi),  $(\alpha_P)$ , (Z), and  $(\theta_D)$ ,  $(O_{PD})$ ,  $(V_o)$ ,  $(T_s)$  and, (H) of BBLC glasses.

| Samples             | Vi                  | Gi,       | $\alpha_p$ ,       | d   | σ   | Zx10 <sup>7</sup> | $\theta_{\rm D}$ , | O <sub>PD</sub> , | V <sub>o</sub> ,       | H,    | T <sub>s</sub> , |
|---------------------|---------------------|-----------|--------------------|-----|-----|-------------------|--------------------|-------------------|------------------------|-------|------------------|
| name                | x10 <sup>-6</sup> , | (kcal/kJ) | (K <sup>-1</sup> ) |     |     | (kg.m             | (K)                | (mol/L)           | (cm <sup>3</sup> /mol) | (GPa) | (°C)             |
|                     | $(m^3)$             |           |                    |     |     | $^{-2}.s^{-1}$ )  |                    |                   |                        |       |                  |
| BBLC <sub>0</sub>   | 0.487               | 16.8      | 115290.67          | 2.1 | 0.2 | 1.80              | 364                | 114.011           | 8.784                  | 4.1   | 602              |
| BBLC <sub>0.5</sub> | 0.512               | 16.8      | 116334.67          | 2.1 | 0.2 | 1.93              | 376                | 120.752           | 8.269                  | 4.51  | 620              |
| BBLC <sub>1</sub>   | 0.526               | 16.9      | 117494.67          | 2.1 | 0.2 | 2.01              | 382                | 124.638           | 8.027                  | 4.69  | 631              |
| BBLC <sub>1.5</sub> | 0.552               | 16.9      | 118074.67          | 2.1 | 0.2 | 2.13              | 391                | 130.621           | 7.657                  | 5.05  | 645              |
| BBLC <sub>2</sub>   | 0.592               | 16.9      | 118886.67          | 2.1 | 0.3 | 2.31              | 401                | 138.110           | 7.246                  | 5.47  | 661              |

 $V_o$  value is reduced due to the network of glass structures. The growth in rigidity in the glass structure is associated with an increase in the content of the network modifier (NWM).



Fig. 5. Elastic moduli of BBLC glasses doped  $Tm^{+3}$ .



Fig. 6. Elastic moduli of BBLC glasses doped Tm<sup>+3</sup> (Makishima – Mackenzie Model).

#### 3.4 Radiation shielding calculation

The theoretical approach is a form of widespread method that uses some common equations to evaluate radiation shielding factors [56-58]. At the same time, we find some computer programs are now available to calculate these parameters for shielding in a short time and accurately, for example MCNP, Win X.com, Phy-X and Py-MLBUF [59-61]. In the present study, MCNP5, XCOM and Phy-X have been used to evaluate some radiation protection factors for the materials under investigation.

# 3.4.1. LAC and MAC

The LAC in (cm<sup>-1</sup>) value has been calculated using the Beer-Lambert law at specified level of photon energy between (0.015MeV-15 MeV) [61]. The LAC value is the most important factor for calculating the radiation of glasses. Overall, the LAC is determined by the energy and density of the material under consideration. The density of the glass samples increases as the content of  $Tm_2O_3$  increases. So, we note that the LAC depends on the concentration of  $Tm_2O_3$  in the samples as illustrated in Fig. 7. It is seen the LAC for doped and undoped glasses have the same pattern with energy, whereas the concentration of  $Tm_2O_3$  in the samples has the opposite tendency. Furthermore, the LAC declined dramatically at energies 0 to 0.04 MeV, decreased slowly at energies 0.04-0.4 MeV, and then practically stayed constant from 0.4 to 15 MeV.

Table 7 & Fig. 8 show MAC values acquired from (MCNP5, X.com and Phy-X/PSD) as well as the deviation (Rd %), which is calculated as Rd = [(x - y)/x)100]. The achieved

findings have good agreement. Indeed, an increase in  $Tm_2O_3$  content in samples correlated with an increase in MAC values. As a result, the inclusion of  $Tm_2O_3$  enhances the attenuation rate of the glasses. The sample MACs show a similar LAC trend. As shown in Table 7, these outcomes resemble the previously stated for other glass systems [10, 15, 16,18, 60]. The addition of  $Tm_2O_3$  to the examined glasses, on the other hand, improves the protective qualities. In comparison to the other glass samples with glass examined in this study, the BBLC<sub>2</sub> had the highest value; thus, these glasses exhibited superior properties for radiation protection applications.



Fig. 7. The LAC variation of BBLC glasses doped Tm<sup>+3</sup>.



Fig. 9. Variation (MAC) of BBLC glasses doped  $Tm^{+3}$ .

#### 3.4.2. (HVL) and MFP $(\lambda)$

Figures 10 and 11 show (HVL) and (MFP) of the prepared glasses. The values of (HVL) and (MFP) increase with photon energy (E). This information demonstrates that when the (E) increases, it gains the ability to penetrate the prepared sample on purpose. Increases in  $Tm_2O_3$  cause decreases in (HVL) and (MFP) values as well. As a result, increasing  $Tm_2O_3$  results in improved gamma radiation decrease. According to our statistics, BBLC<sub>2</sub> is the best sample. Because the highest value of HVL was at energy 15 MeV where it was 6.047 for BBLC<sub>2</sub> while it was 8.497 for BBLC<sub>0</sub>. The achieved results were in good agreement [61]. The highest value of MFP was at energy 15 MeV was 8.725 for BBLC<sub>2</sub> while it was 12.259 for BBLC<sub>0</sub>. The sample BBLC<sub>2</sub> has a lower value of (HVL) and (MFP) than the other samples, indicating that it is a better sample for shielding. As a result, we can conclude that increasing  $Tm_2O_3$  improves radiation

shielding. MFP and HVL exhibit the same trend as a result of the accurate simulation technique used for the examined sample.



Fig. 10. The HVL of BBLC glasses doped  $Tm^{+3}$ .

#### 3.4.3. $Z_{eff}$ , $Z_{eq}$ and electron $N_e$ densities

The materials that have higher  $Z_{eff}$  or Ne values indicate a more effective shield [62]. Fig. 12(a&b) shows the change of the  $Z_{eff}$  and the  $Z_{eq}$  with energy, while Fig. 13 shows the change of the Ne with energy. The photoelectric absorption reactions are influenced by atomic number  $Z^4$ , Compton interactions are influenced by Z, and pair formation interactions are influenced by  $Z^2$ . The highest  $Z_{eff}$  value implies a better gamma-ray shield. So, we detected that the maximum values of the  $Z_{eff}$  are in the low energy (0 - 0.04) MeV. Where the photoelectric effect region. While it decreases with the increased energy as in Compton interactions region (0.04 – 1.5) MeV. On the other hand, the  $Z_{eff}$  increases in pair production interactions region with the increased energy (1.5 - 15) MeV, but it is still smaller than that in the photoelectric effect region. Another material property is the  $Z_{eq}$ , which can be seen in Fig. 13. Due to the Compton scattering, the ( $Z_{eq}$ ) value increases as the energy increases, and it is small in the pair formation interactions region. The highest ( $Z_{eq}$ ) value in the studied samples was 1.0 MeV. As the pair production interacts, the ( $Z_{eq}$ ) value declines at energies higher than 1.0 MeV. The ( $Z_{eq}$ ) value also rises as the amount of Tm<sub>2</sub>O<sub>3</sub> in the samples rises. Generally, the  $Z_{eff}$  rises with an increase in Z, and with the increased concentration of Tm<sub>2</sub>O<sub>3</sub> in samples.



593

Therefore, we note that the highest value of the  $Z_{eff}$  is in the sample BBLC<sub>5</sub> which doped 2% Tm<sub>2</sub>O<sub>3</sub> while the lowest value of the  $Z_{eff}$  is in the sample BBLC<sub>1</sub> which doped 0% Tm<sub>2</sub>O<sub>3</sub>. At the same time, it is seen that the change in the N<sub>e</sub> with the increased energy has the same manner as the  $Z_{eff}$ , but the change in N<sub>e</sub> was more affected than the change in  $Z_{eff}$ . So, the Ne was more evident than the  $Z_{eff}$  in a diagram as Illustrated in Figs. 12 a and 13.

#### 3.4.4. (RPE) and (TF)

The RPE for the studied samples was calculated assuming that the glass thickness was 1.0 cm. From Table. 8 it is noted that the change in the (RPE) with the increased energy has the same behavior as the LAC. It is seen that the (RPE) values decrease with the increased energy. The high value of the (RPE) is noted at 0.255 MeV. This confirms that the studied samples are a good shielding they can be safe from radiation at the energy 0.255 MeV.

# 3.4.5. Effective Atomic Numbers Z<sub>eff</sub> on protons, electrons, alpha particles, and C ions

The charged particles when falling on material, interact with the nuclei of that material. However, this interaction may be ignored as a means for energy loss because the probability of collision with nuclei is less than the probability of collision with electrons. So, the main interaction is a collision with electrons. Accordingly, the increase of the atomic numbers for glasses leads to an increase in the collision with electrons and leads to an increase in the collision-stopping power for the charged particles by materials. It is seen that the Z<sub>eff</sub> values of both proton, Alpha, and Electron have the same behaviors. So, Z<sub>eff</sub> values increase with increased atomic numbers of a prepared glass and, with the increase in energy of these charged particles. It was observed that the Z<sub>eff</sub> values augmented as the content of  $Tm_2O_3$  in samples increased and the sample BBLC<sub>2</sub> has higher values of Z<sub>eff</sub> for this charged particle. therefore, it is Better than all samples as shielding to protection from the proton, Alpha, and Electron as shown in Fig. 14. Z<sub>eff</sub> value of C ions augmented as the content of  $Tm_2O_3$  increased, but it suddenly increased at energy 1.2 MeV then it has gradually decreased with the Energy for all investigated samples as shown Fig. 14. This may be due to an increase in the probability of the interaction between the C ions and the nuclei of the samples because of the large size of the carbon nucleus.



Fig. 12. The effective (a) and equivalent (b) atomic number of BBLC glasses doped  $Tm^{+3}$ .



Fig. 13.  $N_{eff}$  of BBLC glasses doped  $Tm^{+3}$ .



Fig. 14.  $Z_{eff}$  of Electron, Proton, Alpha and Carbon particles versus the energy of BBLC glasses doped  $Tm^{+3}$  ions.



Fig. 15. The fast neutron removal cross-section of BBLC glasses doped  $Tm^{+3}$ .

## 3.4.6. Fast neutron attenuation coefficient, $\Sigma R$

Higher  $\Sigma R$  values lead to the materials having outstanding protection against opposite neutrons. In the present study, sample S5 had the highest  $\Sigma R$  value as shown in Fig. 15, which had the biggest Percentage for Tm<sub>2</sub>O<sub>3</sub> concentration 2%.

|                |          |          | BBLC <sub>0</sub> |           |           |
|----------------|----------|----------|-------------------|-----------|-----------|
| Energy         | MAC from | MAC from | Dev%              | MAC from  | Dev%      |
|                | XCOM     | MCNP5    | XCOM&MCNP         | Phy-x/PSD | XCOM&     |
|                |          |          |                   |           | Phy-x/PSD |
| 0.015          | 1.33E+01 | 13.24357 | 0.048496          | 0.048496  | 0.307     |
| 0.02           | 6.15E+00 | 6.095886 | -0.90412          | -0.90412  | 0.279     |
| 0.03           | 4.87E+00 | 4.803607 | -1.46542          | -1.46542  | 0.279     |
| 0.04           | 5.04E+00 | 4.95161  | -1.72449          | -1.72449  | 0.315     |
| 0.05           | 2.86E+00 | 2.826013 | -1.23803          | -1.23803  | 0.275     |
| 0.06           | 1.81E+00 | 1.797008 | -0.5004           | -0.5004   | 0.213     |
| 0.08           | 8.98E-01 | 0.900643 | 0.304615          | 0.304615  | 0.054     |
| 0.1            | 5.44E-01 | 0.544543 | 0.026232          | 0.026232  | 0.000     |
| 0.15           | 2.57E-01 | 0.252152 | -1.72436          | -1.72436  | 0.146     |
| 0.2            | 1.74E-01 | 0.177371 | 1.787677          | 1.787677  | 0.162     |
| 0.3            | 1.20E-01 | 0.120033 | 0.110644          | 0.110644  | -0.189    |
| 0.356 (0.992)* | 1.07E-01 | 0.106554 | 0.050418          | 0.050418  | -0.111    |
| 0.4            | 9.91E-02 | 0.100331 | 1.216659          | 1.216659  | 0.382     |
| 0.5            | 8.74E-02 | 0.088838 | 1.675351          | 1.675351  | 0.012     |
| 0.6            | 7.93E-02 | 0.080276 | 1.203584          | 1.203584  | 0.604     |
| 0.662          | 7.54E-02 | 0.075608 | 0.315264          | 0.315264  | 0.092     |
| (0.0751)*      |          |          |                   |           |           |
| 0.8            | 6.84E-02 | 0.068645 | 0.327882          | 0.327882  | -0.358    |
| 1              | 6.10E-02 | 0.061476 | 0.741149          | 0.741149  | -0.511    |
| 1.17 (0.0581)* | 5.62E-02 | 0.056449 | 0.405511          | 0.405511  | -0.069    |
| 1.33 (0.0551)* | 5.26E-02 | 0.052891 | 0.587465          | 0.587465  | 0.552     |
| 1.5            | 4.94E-02 | 0.048819 | -1.23029          | -1.23029  | 0.078     |
| 2              | 4.27E-02 | 0.042056 | -1.62721          | -1.62721  | -0.023    |
| 3              | 3.52E-02 | 0.035082 | -0.451            | -0.451    | -0.699    |
| 4              | 3.12E-02 | 0.031223 | 0.17016           | 0.17016   | 0.322     |
| 5              | 2.87E-02 | 0.028545 | -0.40297          | -0.40297  | 0.462     |
| 6              | 2.70E-02 | 0.026715 | -1.0662           | -1.0662   | 0.383     |
| 8              | 2.51E-02 | 0.025295 | 0.928273          | 0.928273  | -1.868    |
| 10             | 2.41E-02 | 0.023864 | -0.86354          | -0.86354  | 0.452     |
| 15             | 2.32E-02 | 0.023004 | -0.93932          | -0.93932  | 1.865     |

Table 7. Comparison of (MAC) calculated by using XCOM, MCNP5 and Phy-X BBLC glasses.

|                |          |          | BBLC <sub>0.5</sub> |           |            |
|----------------|----------|----------|---------------------|-----------|------------|
| Energy         | MAC from | MAC from | Dev%                | MAC from  | Dev%       |
|                | XCOM     | MCNP5    | XCOM&MCNP           | Phy-x/PSD | XCOM& Phy- |
|                |          |          |                     |           | x/PSD      |
| 0.015          | 1.29E+01 | 1.28E+01 | -0.617              | 12.869    | 0.242493   |
| 0.02           | 6.00E+00 | 5.91E+00 | -1.500              | 5.987     | 0.205758   |
| 0.03           | 4.23E+00 | 4.16E+00 | -1.633              | 4.234     | -0.13852   |
| 0.04           | 4.48E+00 | 4.48E+00 | 0.017               | 4.480     | 0.059959   |
| 0.05           | 2.56E+00 | 2.59E+00 | 1.367               | 2.554     | 0.043135   |
| 0.06           | 1.74E+00 | 1.71E+00 | -1.388              | 1.733     | 0.184917   |
| 0.08           | 8.70E-01 | 8.56E-01 | -1.617              | 0.868     | 0.173569   |
| 0.1            | 5.30E-01 | 5.23E-01 | -1.482              | 0.530     | 0.161591   |
| 0.15           | 2.53E-01 | 2.52E-01 | -0.450              | 0.253     | 0.115179   |
| 0.2            | 1.73E-01 | 1.71E-01 | -0.937              | 0.173     | 0.071782   |
| 0.3            | 1.20E-01 | 1.20E-01 | 0.501               | 0.120     | 0.000888   |
| 0.356(0.0974)* | 1.07E-01 | 1.06E-01 | -0.302              |           |            |
| 0.4            | 9.91E-02 | 9.85E-02 | -0.615              | 0.099     | 0.018716   |
| 0.5            | 8.74E-02 | 8.78E-02 | 0.368               | 0.087     | 0.012894   |
| 0.6            | 7.94E-02 | 7.81E-02 | -1.711              | 0.079     | 0.011515   |
| 0.662          | 7.55E-02 | 7.48E-02 | -0.976              |           |            |
| (0.0749)*      |          |          |                     |           |            |
| 0.8            | 6.86E-02 | 6.94E-02 | 1.190               | 0.069     | -0.00074   |
| 1              | 6.12E-02 | 6.10E-02 | -0.242              | 0.061     | 0.001299   |
| 1.77 (0.0587)* | 5.63E-02 | 5.60E-02 | -0.606              |           |            |
| 1.33 (0.0549)* | 5.27E-02 | 5.25E-02 | -0.405              |           |            |
| 1.5            | 4.95E-02 | 4.92E-02 | -0.552              | 0.050     | -0.00582   |
| 2              | 4.28E-02 | 4.31E-02 | 0.765               | 0.043     | 0.007864   |
| 3              | 3.52E-02 | 3.47E-02 | -1.368              | 0.035     | -0.00874   |
| 4              | 3.11E-02 | 3.08E-02 | -0.835              | 0.031     | 0.014066   |
| 5              | 2.85E-02 | 2.81E-02 | -1.314              | 0.029     | 0.007569   |
| 6              | 2.68E-02 | 2.64E-02 | -1.421              | 0.027     | -0.0046    |
| 8              | 2.48E-02 | 2.49E-02 | 0.584               | 0.025     | 0.021334   |
| 10             | 2.37E-02 | 2.35E-02 | -0.862              | 0.024     | 0.011677   |
| 15             | 2.28E-02 | 2.26E-02 | -0.705              | 0.023     | 0.039541   |

\*Represents the experimentally measured value of MAC at the same energy.

| Table 7. Continued |          |          |           |           |            |  |  |  |
|--------------------|----------|----------|-----------|-----------|------------|--|--|--|
| BBLC <sub>1</sub>  |          |          |           |           |            |  |  |  |
| Energy             | MAC      | MAC      | Dev%      | MAC       | Dev%       |  |  |  |
|                    | from     | from     | XCOM&MCNP | from Phy- | XCOM& Phy- |  |  |  |
|                    | XCOM     | MCNP5    |           | x/PSD     | x/PSD      |  |  |  |
| 0.015              | 1.37E+01 | 1.35E+01 | 1.242901  | 13.700    | -0.294     |  |  |  |
| 0.02               | 6.36E+00 | 6.29E+00 | 1.119108  | 6.381     | -0.269     |  |  |  |
| 0.03               | 4.35E+00 | 4.30E+00 | 1.323754  | 4.354     | -0.034     |  |  |  |
| 0.04               | 4.43E+00 | 4.37E+00 | 1.352678  | 4.436     | -0.049     |  |  |  |
| 0.05               | 2.53E+00 | 2.49E+00 | 1.582629  | 2.529     | -0.062     |  |  |  |
| 0.06               | 1.83E+00 | 1.80E+00 | 1.276279  | 1.830     | -0.251     |  |  |  |
| 0.08               | 9.13E-01 | 8.99E-01 | 1.500685  | 0.915     | -0.227     |  |  |  |
| 0.1                | 5.54E-01 | 5.50E-01 | 0.772571  | 0.556     | -0.204     |  |  |  |
| 0.15               | 2.61E-01 | 2.60E-01 | 0.359895  | 0.261     | -0.164     |  |  |  |
| 0.2                | 1.77E-01 | 1.76E-01 | 0.455495  | 0.177     | -0.078     |  |  |  |
| 0.3                | 1.21E-01 | 1.22E-01 | -0.57382  | 0.121     | -0.052     |  |  |  |
| 0.356              | 1.07E-01 | 1.07E-01 | 0.437054  |           |            |  |  |  |
| (0.0992)*          |          |          |           |           |            |  |  |  |
| 0.4                | 9.97E-02 | 1.00E-01 | -0.34253  | 0.100     | -0.022     |  |  |  |
| 0.5                | 8.78E-02 | 8.68E-02 | 1.141807  | 0.088     | -0.017     |  |  |  |
| 0.6                | 7.96E-02 | 7.95E-02 | 0.11267   | 0.080     | -0.015     |  |  |  |

| BBLC <sub>1</sub> |          |          |           |           |            |  |  |  |
|-------------------|----------|----------|-----------|-----------|------------|--|--|--|
| Energy            | MAC      | MAC      | Dev%      | MAC       | Dev%       |  |  |  |
|                   | from     | from     | XCOM&MCNP | from Phy- | XCOM& Phy- |  |  |  |
|                   | XCOM     | MCNP5    |           | x/PSD     | x/PSD      |  |  |  |
| 0.662             | 7.57E-02 | 7.56E-02 | 0.126911  |           |            |  |  |  |
| (0.0762)*         |          |          |           |           |            |  |  |  |
| 0.8               | 6.86E-02 | 6.88E-02 | -0.21849  | 0.069     | -0.005     |  |  |  |
| 1                 | 6.12E-02 | 6.18E-02 | -0.91956  | 0.061     | -0.007     |  |  |  |
| 1.77              | 5.64E-02 | 5.66E-02 | -0.38838  |           |            |  |  |  |
| (0.0566)*         |          |          |           |           |            |  |  |  |
| 1.33              | 5.27E-02 | 5.27E-02 | 0.102944  |           |            |  |  |  |
| (0.0540)*         |          |          |           |           |            |  |  |  |
| 1.5               | 4.95E-02 | 4.94E-02 | 0.221706  | 0.050     | 0.008      |  |  |  |
| 2                 | 4.28E-02 | 4.29E-02 | -0.08913  | 0.043     | -0.012     |  |  |  |
| 3                 | 3.53E-02 | 3.54E-02 | -0.2834   | 0.035     | -0.017     |  |  |  |
| 4                 | 3.11E-02 | 3.08E-02 | 0.979565  | 0.031     | -0.006     |  |  |  |
| 5                 | 2.86E-02 | 2.85E-02 | 0.140132  | 0.029     | -0.014     |  |  |  |
| 6                 | 2.69E-02 | 2.67E-02 | 0.732048  | 0.027     | -0.019     |  |  |  |
| 8                 | 2.49E-02 | 2.52E-02 | -1.22179  | 0.025     | -0.031     |  |  |  |
| 10                | 2.39E-02 | 2.35E-02 | 1.417003  | 0.024     | -0.018     |  |  |  |
| 15                | 2.29E-02 | 2.28E-02 | 0.724132  | 0.023     | -0.065     |  |  |  |

# Table 7. Continued

|             |           |            | BBLC <sub>1.5</sub> |           |         |
|-------------|-----------|------------|---------------------|-----------|---------|
| Energy      | MAC       | MAC        | Dev%                | MAC       | Dev%    |
|             | from XCOM | from MCNP5 | XCOM&MCNP           | from Phy- | XCO     |
|             |           |            |                     | x/PSD     | M& Phy- |
|             |           |            |                     |           | x/PSD   |
| 0.0         | 1.46E     | 1.45E      | 0.198               | 14.52     | 0.2066  |
| 15          | +01       | +01        |                     | 0         | 42      |
| 0.0         | 6.79E     | 6.69E      | 1.419               | 6.770     | 0.2191  |
| 2           | +00       | +00        |                     |           | 9       |
| 0.0         | 4.47E     | 4.42E      | 1.105               | 4.473     | -       |
| 3           | +00       | +00        |                     |           | 0.05407 |
| 0.0         | 4.40E     | 4.34E      | 1.393               | 4.393     | 0.1442  |
| 4           | +00       | +00        |                     |           | 13      |
| 0.0         | 2.51E     | 2.47E      | 1.695               | 2.504     | 0.1353  |
| 5           | +00       | +00        |                     |           | 1       |
| 0.0         | 1.93E     | 1.90E      | 1.681               | 1.925     | 0.2069  |
| 6           | +00       | +00        |                     |           | 11      |
| 0.0         | 9.62E     | 9.54E      | 0.818               | 0.961     | 0.1859  |
| 8           | -01       | -01        |                     |           | 8       |
| 0.1         | 5.82E     | 5.80E      | 0.292               | 0.581     | 0.1626  |
|             | -01       | -01        |                     |           | 41      |
| 0.1         | 2.70E     | 2.69E      | 0.700               | 0.270     | 0.1392  |
| 5           | -01       | -01        |                     |           | 78      |
| 0.2         | 1.81E     | 1.78E      | 1.463               | 0.181     | 0.0878  |
|             | -01       | -01        |                     |           | 45      |
| 0.3         | 1.22E     | 1.24E      | -1.162              | 0.122     | 0.0761  |
|             | -01       | -01        |                     |           | 33      |
| 0.3         | 1.08E     | 1.07E      | 0.659               |           |         |
| 56 (0.102)* | -01       | -01        |                     |           |         |
| 0.4         | 1.00E     | 9.89E      | 1.562               | 0.100     | 0.0461  |
|             | -01       | -02        |                     |           | 27      |
| 0.5         | 8.81E     | 8.75E      | 0.740               | 0.088     | 0.0150  |
|             | -02       | -02        |                     |           | 84      |
| 0.6         | 7.98E     | 8.01E      | -0.343              | 0.080     | 0.0003  |

|              |           |            | BBLC <sub>1.5</sub> |           |         |
|--------------|-----------|------------|---------------------|-----------|---------|
| Energy       | MAC       | MAC        | Dev%                | MAC       | Dev%    |
|              | from XCOM | from MCNP5 | XCOM&MCNP           | from Phy- | XCO     |
|              |           |            |                     | x/PSD     | M& Phy- |
|              |           |            |                     |           | x/PSD   |
|              | -02       | -02        |                     |           | 62      |
| 0.6          | 7.58E     | 7.61E      | -0.365              |           |         |
| 62 (0.0759)* | -02       | -02        |                     |           |         |
| 0.8          | 6.87E     | 6.85E      | 0.333               | 0.069     | 0.0079  |
|              | -02       | -02        |                     |           | 48      |
| 1            | 6.12E     | 6.10E      | 0.409               | 0.061     | 0.0022  |
|              | -02       | -02        |                     |           | 33      |
| 1.1          | 5.64E     | 5.61E      | 0.524               |           |         |
| 7 (0.0562)*  | -02       | -02        |                     |           |         |
| 1.3          | 5.27E     | 5.22E      | 0.926               |           |         |
| 3 (0.0542)*  | -02       | -02        |                     |           |         |
| 1.5          | 4.96E     | 4.94E      | 0.302               | 0.050     | 0.0019  |
|              | -02       | -02        |                     |           | 76      |
| 2            | 4.28E     | 4.26E      | 0.447               | 0.043     | -       |
|              | -02       | -02        |                     |           | 0.00785 |
| 3            | 3.53E     | 3.49E      | 1.250               | 0.035     | 0.0053  |
|              | -02       | -02        |                     |           | 53      |
| 4            | 3.12E     | 3.08E      | 1.354               | 0.031     | 0.0094  |
|              | -02       | -02        |                     |           | 87      |
| 5            | 2.87E     | 2.89E      | -0.931              | 0.029     | 0.0027  |
|              | -02       | -02        |                     |           | 44      |
| 6            | 2.70E     | 2.74E      | -1.569              | 0.027     | 0.0097  |
|              | -02       | -02        |                     |           | 93      |
| 8            | 2.50E     | 2.52E      | -0.665              | 0.025     | 0.0046  |
|              | -02       | -02        |                     |           | 5       |
| 10           | 2.40E     | 2.40E      | 0.359               | 0.024     | 0.0446  |
|              | -02       | -02        |                     |           | 75      |
| 15           | 2.32E     | 2.29E      | 1.311               | 0.023     | 0.0614  |
|              | -02       | -02        |                     |           | 71      |

| Table 7. Continued |          |          |                   |           |            |  |
|--------------------|----------|----------|-------------------|-----------|------------|--|
|                    |          |          | BBLC <sub>2</sub> |           |            |  |
| Energy             | MAC from | MAC from | Dev%              | MAC from  | Dev%       |  |
|                    | XCOM     | MCNP5    | XCOM&MCNP         | Phy-x/PSD | XCOM& Phy- |  |
|                    |          |          |                   |           | x/PSD      |  |
| 0.015              | 1.53E+01 | 1.51E+01 | 1.578             | 15.328    | -0.05474   |  |
| 0.02               | 7.15E+00 | 7.05E+00 | 1.403             | 7.154     | -0.06622   |  |
| 0.03               | 4.60E+00 | 4.53E+00 | 1.471             | 4.591     | 0.115333   |  |
| 0.04               | 4.35E+00 | 4.28E+00 | 1.565             | 4.350     | 0.005643   |  |
| 0.05               | 2.48E+00 | 2.47E+00 | 0.538             | 2.479     | 0.000263   |  |
| 0.06               | 2.02E+00 | 2.00E+00 | 0.874             | 2.019     | -0.0557    |  |
| 0.08               | 1.01E+00 | 1.00E+00 | 0.356             | 1.006     | -0.08054   |  |
| 0.1                | 6.06E-01 | 6.09E-01 | -0.444            | 0.606     | -0.05315   |  |
| 0.15               | 2.79E-01 | 2.76E-01 | 1.018             | 0.279     | -0.03546   |  |
| 0.2                | 1.85E-01 | 1.85E-01 | -0.356            | 0.185     | -0.04862   |  |
| 0.3                | 1.24E-01 | 1.23E-01 | 0.868             | 0.124     | -0.0264    |  |
| 0.356              | 1.09E-01 | 1.09E-01 | -0.457            |           |            |  |
| (0.102)*           |          |          |                   |           |            |  |
| 0.4                | 1.01E-01 | 9.97E-02 | 1.238             | 0.101     | 0.032884   |  |
| 0.5                | 8.85E-02 | 8.80E-02 | 0.509             | 0.088     | -0.00399   |  |
| 0.6                | 8.00E-02 | 7.95E-02 | 0.666             | 0.080     | -0.00596   |  |
| 0.662              | 7.60E-02 | 7.63E-02 | -0.491            |           | 100        |  |

|           |          |          | BBLC <sub>2</sub> |           |            |
|-----------|----------|----------|-------------------|-----------|------------|
| Energy    | MAC from | MAC from | Dev%              | MAC from  | Dev%       |
| 85        | XCOM     | MCNP5    | XCOM&MCNP         | Phy-x/PSD | XCOM& Phy- |
|           |          |          |                   |           | x/PSD      |
| (0.0759)* |          |          |                   |           |            |
| 0.8       | 6.88E-02 | 6.97E-02 | -1.242            | 0.069     | -0.00673   |
| 1         | 6.13E-02 | 6.09E-02 | 0.660             | 0.061     | -0.00394   |
| 1.17      | 5.64E-02 | 5.68E-02 | -0.632            |           |            |
| (0.0562)* |          |          |                   |           |            |
| 1.33      | 5.28E-02 | 5.29E-02 | -0.227            |           |            |
| (0.0542)* |          |          |                   |           |            |
| 1.5       | 4.96E-02 | 4.98E-02 | -0.409            | 0.050     | -0.00367   |
| 2         | 4.29E-02 | 4.25E-02 | 0.804             | 0.043     | -0.00314   |
| 3         | 3.54E-02 | 3.51E-02 | 0.783             | 0.035     | 0.000737   |
| 4         | 3.13E-02 | 3.10E-02 | 0.772             | 0.031     | -0.0044    |
| 5         | 2.88E-02 | 2.88E-02 | -0.197            | 0.029     | -0.01082   |
| 6         | 2.71E-02 | 2.76E-02 | -1.672            | 0.027     | 0.006391   |
| 8         | 2.52E-02 | 2.52E-02 | -0.293            | 0.025     | 0.007376   |
| 10        | 2.42E-02 | 2.39E-02 | 1.226             | 0.024     | -0.00839   |
| 15        | 2.33E-02 | 2.31E-02 | 1.140             | 0.023     | -0.01686   |

|                 |                   |                     | RPE               |                     |                   |
|-----------------|-------------------|---------------------|-------------------|---------------------|-------------------|
| Energy          | BBLC <sub>0</sub> | BBLC <sub>0.5</sub> | BBLC <sub>1</sub> | BBLC <sub>1.5</sub> | BBLC <sub>2</sub> |
| 0.015           | 99.17222          | 99.45065            | 99.59363          | 99.71028            | 99.91346          |
| 0.02            | 88.99379          | 99.12277            | 91.7853           | 93.10486            | 95.86663          |
| 0.03            | 82.42874          | 84.37625            | 85.6212           | 87.34302            | 91.20527          |
| 0.04            | 83.34539          | 99.99277            | 85.29433          | 86.37185            | 89.93708          |
| 0.05            | 64.04912          | 99.58822            | 66.28138          | 67.67202            | 73.24905          |
| 0.06            | 99.85043          | 99.90243            | 99.93003          | 99.95635            | 99.99037          |
| 0.08            | 96.16242          | 96.78883            | 97.2814           | 97.93294            | 99.01862          |
| 0.1             | 86.07167          | 87.57883            | 88.89326          | 90.54662            | 94.0251           |
| 0.15            | 59.85973          | 62.83287            | 64.42953          | 66.60817            | 72.55254          |
| 0.2             | 47.38044          | 48.67336            | 50.19959          | 51.96095            | 58.54462          |
| 0.3             | 35.24238          | 37.14199            | 38.24286          | 40.15712            | 44.64647          |
| 0.356 (0.992)*  | 32.00422          | 33.56073            | 34.48883          | 36.0241             | 41.18328          |
| 0.4             | 30.45506          | 31.54521            | 32.72472          | 33.72889            | 38.39717          |
| 0.5             | 27.50081          | 28.61568            | 29.09373          | 30.56233            | 34.88166          |
| 0.6             | 25.21851          | 25.9016             | 27.02853          | 28.42501            | 32.17905          |
| 0.662 (0.0751)* | 23.94415          | 24.94252            | 25.87042          | 27.22231            | 31.14205          |

Table 8. The radiation protection efficiency (RPE) for all samples.

|                |                   |                     | RPE               |                     |                   |
|----------------|-------------------|---------------------|-------------------|---------------------|-------------------|
| Energy         | BBLC <sub>0</sub> | BBLC <sub>0.5</sub> | BBLC <sub>1</sub> | BBLC <sub>1.5</sub> | BBLC <sub>2</sub> |
| 0.8            | 22.00264          | 23.36297            | 23.85584          | 24.8913             | 28.89509          |
| 1              | 19.95184          | 20.8503             | 21.70756          | 22.50604            | 25.77957          |
| 1.17 (0.0581)* | 18.48189          | 19.31911            | 20.08658          | 20.91054            | 24.28469          |
| 1.33 (0.0551)* | 17.4251           | 18.22282            | 18.83506          | 19.62886            | 22.8254           |
| 1.5            | 16.19908          | 17.20279            | 17.78917          | 18.66677            | 21.64308          |
| 2              | 14.12191          | 15.24747            | 15.62917          | 16.34378            | 18.81359          |
| 3              | 11.92628          | 12.50562            | 13.10077          | 13.58604            | 15.80016          |
| 4              | 10.68741          | 11.19685            | 11.5448           | 12.10668            | 14.11531          |
| 5              | 9.817321          | 10.30193            | 10.75101          | 11.43522            | 13.18082          |
| 6              | 9.217976          | 9.726244            | 10.10917          | 10.88281            | 12.64792          |
| 8              | 8.75              | 9.233194            | 9.597202          | 10.05414            | 11.64871          |
| 10             | 8.276119          | 8.767606            | 9.011487          | 9.587388            | 11.06261          |
| 15             | 7.990117          | 8.484268            | 8.767765          | 9.19184             | 10.70805          |

### 4. Conclusion

The glasses with chemical compositions  $0.75Li_2B_4O_7+0.13BaO+0.1CdO+ 0.02Tm_2O_3$  were fabricated using melt-quench traditional method. The density was evaluated, and there is a rising trend with supplying Tm\_2O\_3. The amorphous nature of the produced samples was verified using the XRD. The incorporation of Tm\_2O\_3 into the Li\_2B\_4O\_7 -BaO-CdO glass matrix significantly improves its optical properties, particularly its transparency in the near infrared region. The spectroscopy analysis recommends that the current glasses are an extremely effective option for non-linear applications of optical instruments. Tm\_2O\_3 doping also enhances the glass's mechanical strength, toughness and elastic moduli making it more resistant to breakage. MCNP5, X.COM, and Phy-X reveal that the glass exhibits favorable radiation shielding properties, making it a promising candidate for applications in nuclear radiation protection, especially the BBLC\_2. The comparative analysis of optical, mechanical, and MCNP simulation characteristics demonstrates the potential of Tm\_2O\_3-doped Li\_2B\_4O\_7 -BaO-CdO glasses for a wide range of applications, including non-linear optical tools, and radiation shielding protection.

#### Acknowledgements

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (44- PRFA-P- 54).

#### References

[1] Wang, Xin; Li, Kefeng; Yu, Chunlei; Chen, Danping; Hu, Lili, Journal of Luminescence, **147**, 341(2014); <u>https://doi.org/10.1016/j.jlumin.2013.11.025</u>

[2] El-Maaref, A. A., Wahab, E. A. A., Shaaban, K. S., Abdelawwad, M., Koubisy, M. S. I., Börcsök, J., Yousef, E. S., Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy, 242, 118774(2020); https://doi.org/10.1016/j.saa.2020.118774

[3] Shaaban, K., Abdel Wahab, E.A., El-Maaref, A.A. *et al.*, J Mater Sci: Mater Electron **31**, 4986(2020); <u>https://doi.org/10.1007/s10854-020-03065-8</u>

[4] El-Maaref, A. A., Badr, S., Shaaban, K. S., Wahab, E. A., &ElOkr, M. M., Journal of Rare Earths, **37**(3), 253(2019); <u>https://doi.org/10.1016/j.jre.2018.06.006</u>

[5] E.A. Abdel Wahab, A.A. El-Maaref, Kh.S. Shaaban, J. Börcsök, M. Abdelawwad, Optical Materials,**111**, 110638(2021); <u>https://doi.org/10.1016/j.optmat</u>.

[6] Saudi, H.A., Abd-Allah, W.M. & Shaaban, K.S., J Mater Sci: Mater Electron **31**, 6963(2020). https://doi.org/10.1007/s10854-020-03261-6

[7] Byoungjin So, Jiangbo She, Yicong Ding, Jinsuke Miyake, Taisuke Atsumi, Katsuhisa Tanaka, Lothar Wondraczek, Opt. Mater. Express **9**, 4348-(2019); <u>https://doi.org/10.1364/OME.9.004348</u>

[8] Shaaban, K.S., Abo-Naf, S.M. &Hassouna, M.E.M., Silicon **11**, 2421(2019); <u>https://doi.org/10.1007/s12633-016-9519-4</u>

[9] Shaaban, K. S., Abo-naf S. M., Abd Elnaeim, A. M., &Hassouna, M. E. M., Applied Physics A, **123**(6), (2017); <u>https://doi.org/10.1007/s00339-017-1052-9</u>

[10] Fayad, A.M., Shaaban, K.S., Abd-Allah, W.M. *et al.*, J Inorg. Organo. Met. Polym. **30**, 5042(2020); https://doi.org/10.1007/s10904-020-01641-3

[11] Shaaban, K.S., Wahab, E.A.A., Shaaban, E.R. et al., Journal of Elec Materi **49**, 2040(2020); <u>https://doi.org/10.1007/s11664-019-07889-x</u>

[12] Abd-Allah, W.M., Saudi, H.A., Shaaban, K.S. et al., Appl. Phys. A **125**, 275 (2019); https://doi.org/10.1007/s00339-019-2574-0

[13] E.A. Abdel Wahab, M.S.I. Koubisy, M.I. Sayyed, K.A. Mahmoud, A.F. Zatsepin, Sayed A. Makhlouf, Shaaban, Kh.S., Journal of Non-Crystalline Solids, **553**, 120509(2021), https://doi.org/10.1016/j.jnoncrysol.2020.120509

[14] Shaaban, K.S., Koubisy, M.S.I., Zahran, H.Y. et al., J Inorg. Organo. Met. Polym. **30**, 4999(2020); <u>https://doi.org/10.1007/s10904-020-01640-4</u>

[15] El-Sharkawy RM, Shaaban KS, Elsaman R, Allam EA, El-Taher A, Mahmoud ME, J Non-Cryst Solids **528**(15), 119754(2020); <u>https://doi.org/10.1016/j.jnoncrysol.2020</u>

[16] Abd-Allah, W.M., Saudi, H.A., Shaaban, K.S. et al, Appl. Phys. A **125**, 275(2019); https://doi.org/10.1007/s00339-019-2574-0

[17] Wahab, E. A. A., Shaaban, K. S., Materials Research Express, **5**(2), 025207(2018); <u>https://doi.org/10.1088/2053-1591/aaaee8</u>

[18] Shaaban, K.S., Wahab, E.A.A., Shaaban, E.R. et al. Opt Quant Electron **52**, 125(2020) ; https://doi.org/10.1007/s11082-020-2191-3

[19] Shaaban, K.S., Yousef, E.S., Mahmoud, S.A. et al. J Inorg. Organ. met. Polym.,(2020); <u>https://doi.org/10.1007/s10904-020-01574-x</u>

[20] Shaaban, K.S., Yousef, E.S., Abdel Wahab, E.A. *et al.*, J. of Materi. Eng and Perform **29**, 4549(2020); <u>https://doi.org/10.1007/s11665-020-04969-6</u>

[21] El-Rehim, A.F.A., Ali, A.M., Zahran, H.Y. et al., J. Inorg. Organo. Met. Polym. (2020); https://doi.org/10.1007/s10904-020-01799-w

[22] Abdel Wahab, E.A., Shaaban, K.S. Yousef, E.S., Opt Quant Electron **52**, 458(2020); <u>https://doi.org/10.1007/s11082-020-02575-3</u>

[23] K. Singh, L. Gerward, Indian Journal of Pure and Applied Physics, 40(9), 643(2002).

[24] M.I. Sayyed, Ali A. Ati, M.H.A. Mhareb, K.A. Mahmoud, Kawa M. Kaky, S.O. Baki, M.A. Mahdi, Journal of alloys and compounds 155668(2020);

https://doi.org/10.1016/j.jallcom.2020.155668.

[25] E. A. Abdel Wahab, Kh. S. Shaaban, Sultan Alomairy, M. S. Al-Buriahi, Eur. Phys. J. Plus **136**, 636(2021); <u>https://doi.org/10.1140/epjp/s13360-021-01572-z</u>

[26] Ö. F. Özpolat, B. Alım, E. Şakar, M. Büyükyıldız, M. Kurudirek, Radiation and Environmental Biophysics **59**, 321(2020); https://doi.org/10.1007/s00411-019-00829-7

[27] Alothman, M.A., Alrowaili, Z.A., Alzahrani, J.S., Wahab, E.A.A., Olarinoye, I.O.,
Sriwunkum, C., Shaaban, K.S., Al-Buriahi, M.S., Journal of Alloys and Compounds, 882, 160625
(2021); <u>https://doi.org/10.1016/j.jallcom.2021.160625</u>

[28] S. R. Manohara, S. M. Hanagodimath, and L. Gerward, Medical Physics 135,1 388(2008).
[29] Makishima, A., J.D. Mackenzie, Journal of Non-Crystalline Solids, 12(1), 35(1973); https://doi.org/10.1016/0022-3093(73)90053-7

[30] Makishima, A., J.D. Mackenzie, Journal of Non-crystalline solids, **17**(2), 147(1975); https://doi.org/10.1016/0022-3093(75)90047-2

[31] S. Gowda, S. Krishnaveni, and R. Gowda, Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, **239**, 361(2005); https://doi.org/10.1016/j.nimb.2005.05.048

[32] Amal A. El-Sawy, International Journal of Hybrid Information Technology 9, 437(2016).

[33] Kavaz E., Tekin H.O., Agar O., Altunsoy E.E., Kilicoglu O., Kamislioglu M.,

Abuzaid M.M., Sayyed M.I., Ceram. Int. 45. (12), 15348(2019);

https://doi.org/10.1016/j.ceramint.2019.05.028

[34] Xinyu Zhaoa, Xiaoli Wangb, Hai Lina, Zhiqiang Wang, Physica B **392** 132 (2007); https://doi.org/10.1016/j.physb.2006.11.015

[35] M. H. A. Mhareb, M. A. Almessiere, M. Sayyed, Y. Alajerami, Optik **182** 821(201); https://doi.org/10.1016/j.ijleo.2019.01.111

[36] M.V. Kurik, Urbach rule (Review), Wiley-VCH, Phys. Stat. Sol. (a), vol.8, pp.9-30, 1971 ; https://doi.org/10.1002/pssa.2210080102

[37] G.D. Cody, Urbach edge of crystalline and amorphous silicon: a personal review, Elsevier, J. Non-Cryst. Solids, **141**, 3 (1992); <u>https://doi.org/10.1016/S0022-3093(05)80513-7</u>

[38] Ihor Studenyak, Mladen Kranjčec, Mykhailo Kurik, **4**, (3), 76 (2014); https://doi.org/10.5923/j.optics.20140403.02

[39] Nagaraja, M., Raghu, P., Mahesh, H.M. Pattar J., J Mater Sci: Mater Electron **32**, 8976(2021); https://doi.org/10.1007/s10854-021-05568-4

[40] Wahab, E.A.A., Alyousef, H.A., El-Rehim, A.F.A., Shaaban, K.S., Journal of Electronic Materials, **52** (1), 219 (2023); https://doi.org/10.1007/s11664-022-09969-x

[41] Wahab, E.A.A., Shaaban, K.S., Al-Baradi, A.M., Silicon, **14** (9), 4915(2022); https://doi.org/10.1007/s12633-021-01236-8

[42] El-Rehim, A.F.A., Wahab, E.A.A., Halaka, M.M.A., Shaaban, K.S., Silicon, **14** (2) (2022) pp. 373-384; <u>https://doi.org/10.1007/s12633-021-01002-w</u>

[43] Yangang Liu, Peter H. Daum, Journal of Aerosol Science, **39**, (11), 974 (2008); https://doi.org/10.1016/j.jaerosci.2008.06.006

[44] W. Heller, Journal of Physical Chemistry, **69**, 1123(1965); https://doi.org/10.1021/j100888a006

[45] V. Dimitrov, S. Sakka. J Appl. Phys. 79, 1741–1745 (1996); https://doi.org/10.1063/1.360963
[46] S. Adachi, Optical properties, properties of group-IV, III-V and II-VI semiconductors, Chichester, UK, John Wiley & Sons Ltd, 211–281(2005);

https://doi.org/10.1002/0470090340.ch10

[47] A.H. Hammad, E.B. Moustafa, J. Non-Cryst. Solids **544**, 120209 (2020); https://doi.org/10.1016/j.jnoncrysol.2020.120209

[48] E.A.A. Wahab, Kh.S. Shaaban, Appl. Phys. A **127**, 956 (2021); https://doi.org/10.1007/s00339-021-05062-y

[49] Wahab, EAA, Aboraia, AM, Shafey, AME, Shaaban, KS, Soldatov, AV, OPTICAL AND QUANTUM ELECTRONICS, **53**, 9 (2021); https://doi.org/10.1007/s11082-021-03164-8

[50] Somaily, H.H., Shaaban, K.S., Makhlouf, S.A. et al, J Inorg. Organo. met. Polym. (2020); https://doi.org/10.1007/s10904-020-01650-2

[51] Shaaban, K. S., El Sayed Yousef, Optik - International Journal for Light and Electron Optics **203**,163976(2020); <u>https://doi.org/10.1016/j.ijleo.2019.163976</u>

[52] Abdel Wahab, E.A., Shaaban, K.S., Elsaman, R. et al., Appl. Phys. A **125**, 869(2019); https://doi.org/10.1007/s00339-019-3166-8 604

- [53] Wahab, E. A. A., Shaaban, Kh. S.. Materials Research Express, **5**(2), 025207(2018); https://doi.org/10.1088/2053-1591/aaaee8
- [54] Al-Hadeethi Y, Sayyed MI, Rammah YS., Ceram Int; **46** (2055), 62(2020); https://doi.org/10.1016/j.ceramint.2019.09.185
- [55] Al-Buriahi MS, Singh VP, J Aust. Ceram. Soc;1–7(2020).
- [56] Yasmin S, Barua BS, Khandaker MU, Rashid MA, Bradley DA, Olatunji MA, et al. Results Phys; **9**(541),9(2018); <u>https://doi.org/10.1016/j.rinp.2018.02.075</u>
- [57] Gerward L, Guilbert N, Jensen KB, Levring H, Radiat Phys Chem;71:653(2004); https://doi.org/10.1016/j.radphyschem.2004.04.040
- [58] Mann Kulwinder Singh, Mann Sukhmanjit Singh. Ann Nucl Energy; 150:107845(2021).
- [59] Mirji R, Lobo B. Radiat Phys Chem; 135:32(2017);
- https://doi.org/10.1016/j.radphyschem.2017.03.001. [60] S. Kaur, A. Kaur, P.S. Singh, T. Singh, Prog. Nucl. Energy **93**, 277(2016); https://doi.org/10.1016/j.pnucene.2016.08.022
- [61] K. Singh, H. Singh, V. Sharma et al., Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, **194**, 1(2002); <u>https://doi.org/10.1016/S0168-583X(02)00498-6</u>
- [62] V.P. Singh, N.M. Badiger, Radiat. Phys. Chem. **104** 61(2014); https://doi.org/10.1016/j.radphyschem.2013.11.025.
- [69] Y. Karabul, L. Amon Susam, O. Içelli, O. Eyecioglu, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. **797**, 29(2015); <u>https://doi.org/10.1016/j</u>. nima.2015.06.024.