PHYSICAL SCIENCE APPROACHES OF 2-BROMOBENZAMIDE DERIVATIVE

N. SUMATHI^{*}, S. GEETHA, K. VIJAYAKUMAR

^aDepartment of Chemistry (Science and Humanities), M. Kumarasamy College of Engineering (Autonomous), Thalavapalayam, Karur-639 113, Tamilnadu, India

2-bromoobenzamide atom was subjected to conformational analysis. The stable structure was anticipated by the thickness utilitarian hypothesis and HartreeFock estimations utilizing the B3LYP useful with 311++G (d,p) premise set. The relative investigations additionally had done. The upgraded auxiliary parameters and vibration frequencies were computed. The test and hypothetical vibration frequencies were allotted and looked at. IR and Raman range was reenacted and approved tentatively. Thermo science of the particle was ascertained. The electronic properties, for example, HOMO and LUMO energies, were performed by time-subordinate DFT (TD-DFT) approach. The Mulliken charges, the estimations of electric dipole minute (μ) of the atom were registered utilizing DFT counts.

(Received April 6, 2018; Accepted July 16, 2018)

Keywords: 2-Chloro benzamide, DFT, HF methods

1. Introduction

Benzamide derivatives have various applications in medicinal field especially for Diabetes mellitus, excess body fat disorders, psychosis treatment depressive disorder and treatment of neurological diseases. It also posses wide applications in industrial areas. The Chromophoric group is employed for structural studies[1]. Tumor promotion is highly inhibited by benzamide and its derivatives[2]. In agriculture, benzamide derivative is used as a weed killer and registered as a dying agent. The sweetness property of benzamide compounds used in foodstuff chewing gum, toothpaste, hard liquor, juicy fluids and so on.

The present study has carried out 2-Bromobenzamide (2BBA) quantum chemical calculations and the vibration spectra.Due to its applications in various fields, we have interested to examine vibration spectra of this compound clearly by combining the experimental and theoretical information using *ab initio* (HF) and DFT (B3LYP). For determining the FT-IR and FT-Raman spectra, studies on thermal properties and on the HOMO-LUMO energy are done with the corresponding optimized molecular structure.

2. Experimental details

BRUKERIRS-66V vaccum Fourier change spectrometer was utilized to examine the fine crystalline specimen of 2BBA which was gotten from Sigma Aldrich, UK. FT-IR range was acquired in the 4000cm⁻¹ – 400cm⁻¹ region at room temperature with the determination of ± 1 cm⁻¹. Mercury cadmium telluride(MCT) and KBr is utilized as identifier and pillar splitter. The FT-Raman range of 2BBA was recored in the feeds area of 400-50cm⁻¹ by utilizing BRUKERIFS - 66V model interferometer furnished with a FRA-106

Corresponding author: sivam.lakshmi@gmail.com

3. AB initio / HFand DFT / B3LYP calculations

Using *ab initio* / HF and DFT / B3LYP functional with the standard 6-311++G(d,p) basis set[3,4] quantum chemical calculations are carried out for 2BBA with the Windows'07 version of the GAUSSIAN 09[5]. The Ab Initio products are provided on a user friendly homogeneous and heterogeneous platform for structural processing applications. All the parameters are allowed to relax and all the calculations converged to an optimized geometry which corresponds to a true energy minimum, as revealed by the lack of imaginary values in the wave number calculations. The Cartesian representation of the theoretical force constants have been computed at the fully optimized geometry. To achieve a close agreement between the observed and calculated frequencies, least-square fit refinement algorithm is used. The standard procedures used to determine the symmetries of the vibrationmodes[6]. By combining the observed and theoretical information the results of the GAUSSVIEW 09 program with symmetry considerations, vibration frequency assignments shows high degree of accuracy. There is consistently some equivocation in explaining internal coordinates.

In any case, the characterized directions of finish set and adversaries' great with watched utilizing the GAUSSVIEW 09 program. Inner directions of 2BBA were characterized in Table 3. From these, neighborhood symmetry of inner directions is abridged in Table 4.

4. Results and discussion

The plan of numbering the molecules and the structure of orthobromobenzamide are appeared in Fig. 1. Optimized geometrical parameters bond length and bond plot for 2-BBA by HF/6.311++G(d,p) and B3LYP/6.311++G(d,p) displayed in Table 1. Utilizing the standard method [7] of breaking down the hints of the symmetry operation into the unchangeable portrayal, the symmetries of the vibration modes were resolved. The atom has C1 point assemble symmetry. All vibrations are indispensable both in IR and Raman. Every one of the frequencies are distributed regarding key, suggestion and blend groups. Different warm parameters likewise anticipated.

Fig. 1. Molecular structure of 2-BromoBenzamide

4.1. Structural properties

Molecular geometry

The streamlined sub-atomic structure of 2-BBA is appeared in Fig.1. The worldwide least vitality got by the DFT structure streamlining for 2BBA are computed as - 5449.73953344 and - 5454.63546080 Hartrees, from 6-31++G(d,p) and 6-311++G(d,p) premise sets individually. As indicated by the hypothetical estimations, 2BBA has 16 particles and 42 ordinary methods of key vibrations. The watched and computed frequ enhancement geometrical parameters 2BBA are looked at for HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) are abridged. The itemized vibration assignments of major modes alongside the computed IR powers, Raman movement, drive constants, diminished mass are likewise revealed in Table 2 individually. The watched and ascertained estimations of FT-IR and FT-Raman spectra of 2BBA are appeared in Figs. 2-4.

vibration investigation of 2BBA are made the premise of the size and relative force of the recorded spectra and in relationship with the task made by the before specialists on the comparable sort of atoms.

BOND LENGTH	VALUE (A ⁰)		BOND VALU		JE (⁰)	DETRAHEDRAL ANGLE	VALUE (⁰)	
	HF	B3LYP		HF	B3LYP		HF	B3LYP
C1-C2	1.3874	1.4011	C2-C1-C6	118.1579	117.1596	C6-C1-C2-C3	-0.9218	-0.7743
C1-C6	1.3921	1.4043	C2-C1-C7	126.0201	128.4243	C6-C1-C2-Br12	176.321	176.616
C1-C7	1.5117	1.5168	C6-C1-C7	115.8042	114.3993	C7-C1-C2-C3	⁻¹ 79.3178	-179.193
C2-C3	1.3863	1.3942	C1-C2-C3	121.0784	121.518	C7-C1-C2-Br12	-2.075	-1.8025
C2-Br12	1.9081	1.9328	C1-C2-Br12	122.1518	123.2148	C2-C1-C6-C5	1.691	1.5564
C3-C4	1.3815	1.3906	C3-C2-Br12	116.7159	115.2204	C2-C1-C6-H16	⁻¹ 79.0625	-178.003
C3-H13	1.073	1.0821	C2-C3-C4	119.7776	119.8747	C7-C1-C6-C5	⁻¹ 79.7493	-179.804
C4-C5	1.3854	1.3931	C2-C3-H13	119.749	119.6787	C7-C1-C6-H16	0.4965	0.6371
C4-H14	1.075	1.0839	C4-C3-H13	120.4717	120.4453	C2-C1-C7-O8	126.093	145.4932
C5-C6	1.3802	1.3875	C3-C4-C5	120.0293	119.8542	C2-C1-C7-N9	-58.8304	-39.2463
C5-H15	1.0747	1.0835	C3-C4-H14	119.525	119.4716	C6-C1-C7-O8	-52.3362	-32.9618
C6-H16	1.074	1.0827	C5-C4-H14	120.4421	120.6715	C6-C1-C7-N9	122.7404	142.2988
C7-O8	1.1931	1.2204	C4-C5-C6	119.6879	119.6501	C1-C2-C3-C4	-0.3935	-0.4535
C7-N9	1.3515	1.3611	C4-C5-H15	120.3731	120.4379	C1-C2-C3-H13	179.1288	179.1359
N9-H10	0.9945	1.0089	C6-C5-H15	119.9368	119.9105	Br12-C2-C3-C4	$^{-1}77.7802$	-178.04
N9-H11	0.9913	1.0069	C1-C6-C5	121.2465	121.9238	Br12-C2-C3-H13	1.7421	1.5491
H11-Br12	2.9271	2.5645	C1-C6-H16	118.3871	117.2159	C1-C2-Br12-H11	38.0611	28.8161
*	*	*	C5-C6-H16	120.366	120.8588	C3-C2-Br ⁻¹ 2-H11	-144.5825	-153.643
*	*	*	C1-C7-O8	120.5407	119.948	C2-C3-C4-C5	0.9785	0.9511
*	*	*	C1-C7-N9	116.4972	117.8406	C2-C3-C4-H14	-179.7042	-179.65
*	*	*	O8-C7-N9	122.7681	122.0341	H13-C3-C4-C5	-178.5403	-178.635
*	*	*	C7-N9-H10	117.1782	116.7068	H13-C3-C4-H14	0.777	0.764
*	*	*	C7-N9-H11	121.3866	122.088	C3-C4-C5-C6	-0.2254	-0.1932
*	*	*	H10-N9-H11	118.1	118.3953	C3-C4-C5-H15	179.2426	179.3557
*	*	*	N9-H10-Br12	107.2478	124.1498	H14-C4-C5-C6	-179.5364	-179.585
*	*	*	C2-Br12-H11	71.0183	77.4927	H14-C4-C5-H15	-0.0684	-0.036
*	*	*	*	*	*	C4-C5-C6-C1	-1.1352	-1.0962
*	*	*	*	*	*	C4-C5-C6-H16	178.6142	178.4468
*	*	*	*	*	*	H15-C5-C6-C1	179.3945	179.3525
*	*	*	*	*	*	H15-C5-C6-H16	-0.8561	-1.1045
*	*	*	*	*	*	C1-C7-N9-H10	173.4147	175.7809
*	*	*	*	*	*	C1-C7-N9-H11	14.4317	15.085
*	*	*	*	*	*	O8-C7-N9-H10	-11.6285	-9.0635
*	*	*	*	*	*	O8-C7-N9-H11	-170.6114	-169.76
*	*	*	*	*	*	C7-N9-H11-Br12	42.9416	32.7224
*	*	*	*	*	*	H10-N9-H11-Br12	-115.8549	-127.662
*	*	*	*	*	*	N9-H11-Br12-C2	-72.8363	-53.7768

Table 1. Optimized geometrical parametres of 2-Bromo benzamide by HF /6.311++G(d,p)and B3LYP /6.311++G(d,p) methods and basis set.

^{*}Indicates no such bonds are available

Fig. 2. FT-IR spectra of 2-BROMO BENZAMIDE observed with KBr disc.

Fig. 3. FT-IR spetrcum of 2-BROMO BENZAMIDE calculated

Fig. 4. FT-RAM spectrum of 2-BROMO BENZANIDE calculated

The enhanced parameters of 2BBA acquired by B3LYP/6-311++G(d,p) level and HF/6.311++G(d,p) are given in Table 1 alongside the advanced parameters of dimer structure. The bond lengths decided from B3LYP technique are somewhat higher than the trial esteems[8]. The C– C bond separation of the ring shifts in the range 1.3802– 1.4043 Å out of 2BBA, yet for C1– C7 bond length is 1.5168 Å (B3LYP) and 1.5117(HF) for 2BBA because of amide gathering. Because of present of bromine gather the C₂-Br₁₂ bond length is shifted in the range 1.9081(HF) and 1.9328 Å (B3LYP).

Table 2. Vibrational assignments of fundamental frequencies in cm⁻¹ obtained for 2-BROMO BENZAMIDE

at

HF/6-311++G(d, p) and B3LYP/6-311++G(d, p) level [Wave numbers (cm⁻¹); IR Intensities(km mol⁻¹); Reduced mass (amu), Force constant (m dyne A⁻¹); Raman activity (A⁴/amu)]

Obs frequer	erved ncy (cm ⁻¹)			HF / 6-311++0	Ĵ		B3LYP / 6-311 ++G				
FT-IR	FT- Raman	Frequen cy	Force constants	IR Intensity	Raman Intensity	Reduced Mass	Freque ncy	Force constant s	IR Intensity	Raman Intensity	Reduced Mass
3389	3390	3955	0.0069	0.107	0.2381	1.0881	3704	0.0064	0.1952	0.2936	1.0868
3186	3186	3619	0.0364	1.7009	0.1867	1.0931	3577	0.0301	1.4352	0.0363	1.0915
-	3079	3368	0.1098	34.2242	20.3123	1.0959	3206	0.1441	0.4307	0.2075	1.0928
2955	-	3362	0.1047	0.2889	1.1501	1.0975	3203	0.0999	1.3666	0.4053	1.0929
2926	-	3348	0.3667	8.1666	1.3003	1.0473	3189	0.3842	0.3193	4.4593	1.0451
2854	-	3032	0.5614	229.854	0.5615	1.1047	3075	0.4021	199.673	0.5097	1.1051
1664	-	1929	0.1201	2.082	1.2924	1.3351	1739	0.1228	2.5531	0.5409	1.2753
1648	-	1782	0.3014	8.7695	0.5884	3.6695	1629	0.2837	2.5711	1.2247	4.1463
1622	1618	1774	0.2986	4.9727	6.0977	5.1621	1624	0.2804	0.4657	0.4614	4.0486
1581	1581	1744	0.5777	2.1922	1.5724	1.4081	1598	0.5019	2.5621	0.625	1.3965
1483	1483	1629	0.2438	3.0451	19.5656	1.3826	1492	0.3152	7.0253	6.2263	1.3706
1460	1460	1582	0.5779	8.7538	9.9634	4.5715	1459	0.3229	1.0777	21.2643	1.3163
1408	1417	1480	0.803	3.2074	1.6199	1.4431	1365	0.5427	4.1207	1.8617	1.4803
1364	-	1384	0.9572	9.502	1.78	1.5508	1313	1.4962	2.5978	3.0231	8.5239
1262	1262	1314	3.3274	6.6505	11.9255	3.1017	1282	1.019	7.3824	1.2694	3.3361
1217	1219	1249	1.0644	4.4943	1.7679	1.452	1188	0.6439	5.5719	1.864	1.5761
-	1161	1230	2.3645	1.875	3.2215	3.1379	1159	0.77	37.764	1.3242	3.0878
1146	1146	1204	2.6456	15.7233	0.8186	3.2215	1138	0.7811	77.822	3.5954	7.9666
1096	1096	1181	1.1837	5.0699	2.0968	1.6719	1102	0.9899	6.4892	2.5815	1.6107
1086	-	1131	1.7265	66.0475	0.9975	2.5635	1061	1.5053	9.6867	6.7835	4.2864
1035	1037	1115	1.7118	60.757	3.8226	9.6142	1028	1.2885	3.2069	1.2525	2.7109
1020	1026	1111	1.469	9.6618	2.1906	1.8587	1004	1.434	8.6477	3.6107	2.1174
960	-	1084	1.7263	1.7134	9.0196	1.849	977	8.6578	0.9216	7.836	2.3819
872	868	984	4.0005	2.1309	1.8877	1.9082	885	3.6649	1.6272	6.3001	5.5182
820	-	882	1.5888	12.2679	2.6071	2.0734	799	1.6594	17.111	4.5216	2.1765
791	791	839	1.6479	16.2679	5.3434	2.4365	770	1.416	14.48	0.4744	1.7903
760	761	827	1.7526	2.1001	4.758	5.7003	756	0.917	1.6935	8.9917	1.1025
740	-	790	1.7078	14.2227	5.2321	3.7798	705	2.4487	38.1281	5.0746	3.8555
684	-	716	0.6498	76.3542	1.7166	1.2988	665	4.8282	9.089	6.6947	1.9602
629	629	671	1.4183	9.5013	7.486	2.5982	621	14.192	6.5326	1.3425	1.6986
605	-	614	3.0575	24.9875	5.2484	4.2404	568	2.656	46.9453	11.1654	4.3577
567	-	564	3.8085	17.201	0.4985	1.5666	522	3.124	3.4497	30.906	5.7747
540	540	509	10.216	0.4069	1.159	3.0959	470	8.2976	1.8954	12.3524	4.402
514	514	430	3.1	40.1265	7.5134	4.4663	411	4.8463	64.6508	26.7855	5.5387
460	457	412	4.7989	10.6024	21.6432	5.7179	397	1.855	10.9551	23.4453	6.6065
-	407	365	21.0878	6.8789	13.8313	4.6607	365	1.3149	6.6173	25.5164	5.5985
-	369	322	7.117	46.1403	51.2496	5.2392	292	6.4541	135.107	60.085	6.669
-	256	281	7.2172	105.766	99.4132	6.4559	270	6.5405	5.1365	126.986	4.3865
-	229	197	7.2981	532.0554	68.622	4.8936	194	6.6037	392.795	32.5662	8.2627
-	216	160	7.333	209.9754	175.8056	7.04	172	6.6364	192.970	243.194	7.7789
-	199	119	9.0001	25.3574	114.2405	4.3589	108	7.8781	23.1135	159.504	2.7953
-	-	41	10.1833	5.4858	33.0423	7.2363	40	8.9372	1.7053	43.3594	1.8374

C-H Vibrations

Trademark area for the prepared ID of C– H extending vibrations in the hetero fragrant structure gives groups in the locale 3100-3000 cm⁻¹[9]. Relies upon the nature and position of the substituent, these vibrations are influenced. By utilizing Wilson's numbering tradition, Phenyl ring vibrations have been examined [10,11]. The 2BBA have four contiguous C-H moieties in benzene ring. The C-H vibrations are appeared in the Table 3 Normal vibrations 1-4 are arranged as the C-H extending vibrations. Frequencies for C-H stretching vibrations seem, by all accounts, to be 3032 cm⁻¹ (HF) and 3075cm⁻¹(B3LYP). Ordinary vibrations 19-26 are sorted as the C-H in-plane twisting vibrations. Attributable to substitution delicate, C-H in-plane twisting vibrations found in the scope of 1000– 1300 cm⁻¹[12]. These mode numbers are seen at the accompanying wavenumbers locale 1084-1249 cm⁻¹ in HF and 1004-1282cm⁻¹ in B3LYP. The C-C extending vibrations moved to bring down wave number area because of the nearness of huge substituent. C–H vibration assimilation groups are excessively frail and not impacted fundamentally by the idea of substituents in the Heterocyclic compound.

No. (i)	Symbol	Туре	Definition			
Stretching						
1-4	ri	C-H	C_3 - H_{13} , C_4 - H_{14} , C_5 - H_{15} , C_6 - H_{16}			
5 ⁻¹ 1	Ri	CC	C ₁ -C ₂ ,C ₂ -C ₃ ,C ₃ -C ₄ ,C ₄ -C ₅ ,C ₅ -C ₆ ,			
5 1	KI	C-C	$C_1 - C_7, C_1 - C_6$			
12	Si	C=O	C ₇ -O ₈			
13	Qi	C-N	C ₇ -N ₉			
14	qi	C-Br	C ₂ -Br ₁₂			
15-16	Ti	N-H	N_9-H_{10},N_9-H_{11}			
In-plane bending						
17-18	γi	C-C-C	$C_2-C_1-C_7, C_6-C_1-C_7$			
			C_2 - C_3 - H_{13} , C_4 - C_3 - H_{13} , C_3 - C_4 - H_{14} ,			
19-26	γi	C-C-H	$C_5-C_4-H_{14}, C_4-C_5-H_{15}, C_6-C_5-H_{15},$			
			$C_5-C_6-H_{16}, C_1-C_6-H_{16}$			
27	θi	C-C-O	$C_1-C_7-O_8$,			
28	φi	C-C-N	C ₁ -C ₇ -N ₉			
29-30	πi	C-N-H	$C_7-N_9-H_{10}, C_7-N_9-H_{11}$			
31	πi	H-N(SC,ROC)	H ₁₀ -N ₉ -H ₁₁			
34-35	βi	C-C-Br	$C_1-C_2-Br_{12},Br_{12}-C_2-C_3$			
	αί	Ring	$C_3 - C_4 - C_5, C_4 - C_5 - C_6,$			
36-41			$C_5 - C_6 - C_1, C_2 - C_3 - C_4, C_1 - C_2 - C_3$			
			$C_{6}-C_{1}-C_{2}$			
Out - of - plane b	ending					
42	ψ	C-C	$C_7 - C_1 - C_2 - C_6$			
43	λ	C-Br	$Br_{12}-C_2-C_3-C_1$			
44	Н	O-C	$O_8-C_7-C_1-N_9$			
15 19		СЧ	H_{13} - C_3 - C_4 - C_2 , H_{14} - C_4 - C_5 - C_3 ,			
43-40	ω	С-п	$H_{15}-C_5-C_6-C_4, H_{16}-C_6-C_1-C_5$			
49	М	N-H	N_9 - C_7 - H_{10} - H_{11}			
Torsion						
			$C_1-C_2-C_3-C_4, C_2-C_3-C_4-C_5,$			
50-55	Ti	t ring	$C_3-C_4-C_5-C_6, C_4-C_5-C_6-C_1,$			
			$C_5 - C_6 - C_1 - C_2, C_6 - C_1 - C_2 - C_3$			
56-59	Ti	NO	$O_8-C_7-C_1-C_2, O_8-C_7-C_1-C_6,$			
	**		$N_9-C_7-C_1-C_2, N_9-C_7-C_1-C_6$			
60-63	Ti	NH	$H_{10}-N_9-C_7-C_1, H_{10}-N_9-C_7-O_8,$			
00 00			$H_{11}-N_9-C_7-C_1,H_{11}-N_9-C_7-O_8$			

Table 3. Definition of internal coordinates of 2-BROMO BENZAMIDE

C=O vibrations

Carbon and oxygen of the carbonyl gathering have almost square with amplitudes because of their development amid vibration. So In IR Spectrum the most trademark band is carbonyl band. The intermolecular hydrogen bond influences the carbonyl frequencies. A lot of auxiliary data can be gotten from the correct position of the carbonyl extending ingestion tops. For the carbonyl gatherings, the trademark groups lies [13] in the district 1800-1700 cm⁻¹. These mode numbers are seen at the accompanying district at 1782cm⁻¹ in HF and 1739cm⁻¹ in B3LYP. The C-O extending vibrations lie in the scope of 1690-1630cm⁻¹ for amide gathering. Here we have watched recurrence at 1629cm⁻¹ in the two sets for 2BBA.

C–C vibrations

The groups in the vicinity of 1400 and 1650 cm⁻¹ in benzene subsidiaries are because of C– C extending vibrations [14]. In this manner, the C-C extending vibrations of 2BBA are found in the scope of 1480-1629cm⁻¹(HF) and 1459-1629cm⁻¹(B3LYP). A large portion of the ring Vibration modes are influenced by the substitutions in the fragrant ring of 2BBA.The diminishments in the frequencies of these modes are because of the adjustment in constrained steady and the vibrations of the utilitarian gatherings show in the atom.

Amide group vibrations

The amide subordinates gangs the accompanying interior methods of vibrations: (I) CO inplane disfigurement, (ii) CN stretching,(iii) NH₂ scissoring, (iv) NO torsional mode, (v) NH₂ swaying, (vi) NH₂ torsion, (vii) NH₂ lopsided extending, (viii) CN in-plane twisting, (ix) CO extending, (ix) NH₂ symmetric extending, (x) NO swaying and (xi) NH₂ shaking. One unbalanced and one symmetric extending are found in NH₂ gather in which deviated vibration is higher one. In 2BBA, the ordinary vibrations 15-16 are categorized as extending vibrations, 31 is classified as in plane bowing vibrations ,49 for out of plane bowing vibrations and 60-63 for torsion. The general amide N-H extending vibrations saw in the district 3700-3500cm⁻¹. In 2BBA 3619cm⁻¹(HF) and 3577cm⁻¹(B3LYP) has watched for extending vibrations. The watched esteems are in great concurrence with study esteems[15]. The figured vibration for these groups is in amazing predictable with the tentatively got outcomes.

C-N Vibrations

In 2BBA, the normal vibration 13 is categorized as stretching vibrations, 28 is categorized as in plane bending vibration. The general amide N-H stretching vibrations observed in the region 3700-3500cm⁻¹. In 2BBA 3619cm⁻¹(HF) and 3577cm⁻¹(B3LYP) has observed for stretching vibrations. Socrates et al. assigned vibrations in the region 1420–1400 cm⁻¹ for amide III band which is C-N stretching [12].Here we have observed 1384-1480cm⁻¹(HF) and 1365-1459cm⁻¹ (B2LYP) for C-N vibrations.

C-Br vibrations

The blending of vibrations are conceivable between benzene ring and bromine particle with the nearness of overwhelming iotas outskirts of the atom [16]. C– Br bond indicates bring down ingestion recurrence when contrasted with C– H bond because of the diminished power steady and increment in lessened mass. Bromine mixes assimilate firmly in the area 650-485cm⁻¹ because of C– Br extending vibrations [17]. In the watched spectra distinguished that 509- 614cm⁻¹(HF) and 470-621 cm⁻¹(B3LYP) for 2BBA has been allocated to C– Br extending vibrations.

Thermodynamic properties

The calculated Thermo dynamical parameters of 2-BBA using DFT and B3LYP/6-31G and HF basis set given in Table 4.In order to determine zero-point vibrationenergies, scale factors have recommended. The summation of the rotational, vibration, translational, and electronic energies give the total energy of the molecule. The global minimum energy obtained by the DFT structure optimization for 2BBA are calculated as -2970.3670661 and-2974.6064190 from HF/6-311++G(d p) and B3LYP/6-311++G(d p) basis sets respectively.

No. (1)	Туре	Definition
1-4	СН	r ₁ , r ₂ , r ₃ , r ₄
5-11	CC	$R_5, R_6, R_7, R_{8}, R_9, R_{10}, R_{11}$
12	C=O	Q ₁₂
13	CN	Q ₁₃
14	CBr	S ₁₄
15	NH ₂ SS	$(T_{15}+T_{16})/\sqrt{2}$
16	NH ₂ AS	$(T_{15}-T_{16})/\sqrt{2}$
17	Bccc	$(\gamma_{17} - \gamma_{18}) / \sqrt{2}$
18-21	Bcch	$(\gamma_{19} - \gamma_{20}) / \sqrt{2}, (\gamma_{21} - \gamma_{22}) / \sqrt{2}, (\gamma_{23} - \gamma_{24}) / \sqrt{2}, (\gamma_{25} - \gamma_{26}) / \sqrt{2}$
22	bC=O	θ ₂₇
23	b C-N	\$\phi_{28}\$
24	bNH ₂ SC	$(2\pi_{29} - \pi_{30} - \pi_{31}) / \sqrt{6}$
25	bNH ₂ roc	$(\pi_{32},\pi_{33})/\sqrt{2}$
26	bC-Br	$(\beta_{34} - \beta_{35}) / \sqrt{2}$
27	b ring	$(\alpha 3_7 - \alpha_{36} + \alpha_{39} - \alpha_{38} - \alpha_{41} + \alpha_{40}) / \sqrt{6}$
28	b ring	$(2\alpha_{36} - \alpha_{37} + 2\alpha_{39} - \alpha_{40} - 2\alpha_{41}) / \sqrt{12}$
29	b ring	$(\alpha_{37} - \alpha_{38} + \alpha_{40} - \alpha_{41}) / 2$
30	CC	Ψ42
31	CBr	λ_{43}
32	CN	H 44
33-36	СН	$\omega_{45}, \omega_{46}, \omega_{47}, \omega_{48}$
37	NH ₂	M 49
38	τ- ring	$(\tau_{51} - \tau_{50} - \tau_{53} - \tau_{52} + \tau_{56} - \tau_{55}) / \sqrt{6}$
39	τ- ring	$(\tau_{50} - \tau_{52} + \tau_{53} - \tau_{55})/2$
40	τ- ring	$(-\tau_{50} + 2\tau_{51} - \tau_{52} - \tau_{53} + 2\tau_{54} - \tau_{55}) / \sqrt{12}$
41	τ- ΝΟ	$\left(\tau_{56}+\tau_{57}+\tau_{58}+\tau_{59}\right)/4$
42	τ-NH2	$(\tau_{60} + \tau_{61} + \tau_{62} + \tau_{63}) / 4$

Table 4. Definition of local symmetry coordinates of 2-BROMO BENZAMIDE.

	2-bromobenzamide				
Parameters	HF/6-311++G(d p)	B3LYP/6- 311++G(d p)			
Optimized global minimum Energy,(Hartrees)	-2970.3670661	-2974.6064190			
Total energy(thermal), E _{total} (kcal mol ⁻¹)	83.800	78.895			
Heat capacity, $Cv(kcal mol^{-1} k^{-1})$ ¹)Entropy, S (cal mol ⁻¹ k ⁻¹)	31.560	33.597			
Total	94.731	96.189			
Translational	41.769	41.769			
Rotational	30.699	30.768			
Vibrational	22.264	23.652			
Zero point vibrational energy, (Kcal mol ⁻¹)	78.38365	73.22077			
А	1.16939	1.17279			
В	0.90846	0.88367			
С	0.54375	0.51982			
μ _x	0.7946439	0.9402695			
μ _y	0.4928428	0.3253329			
μ _z	-1.0668678	-0.6238844			

Table 5.The thermodynamic parameters of 2- Bromobenzamide at calculated atHF/6-311++G(d, p) and B3LYP/6-311++G(d, p) methods and basis set

4.2. Homo-lumoanalysis

The electronic assimilation agree with the excitation of one electron from the most elevated possessed sub-atomic orbital (HOMO) to the least abandoned sub-atomic orbital (LUMO) ^[18]. The conjugated electrons in natural atom are portrayed by huge estimations of sub-atomic first hyperpolarizabilities which are analyzed by methods for vibration spectroscopy. The nuclear orbital HOMO and LUMO creations of the wilderness atomic orbital for 2BBA figured at the B3LYP/6-311++G(d,p) which uncovers that the vitality hole mirrors the substance movement of the particle. Both the most elevated possessed atomic orbital (HOMO) and the least abandoned sub-atomic orbital (LUMO) are the principle orbital participating in substance response. The vitality hole between the HOMOs and LUMOs is a basic parameter in deciding atomic electrical transport properties since it is a measure of electron conductivity [19]. The holding plan of 2BBA comprehended by wilderness orbital's. The LUMO as an electron acceptor (EA)[20]and HOMO speaks to electron donor(ED). Besides, a lower HOMO– LUMO vitality hole uncovers that inevitable charge exchange cooperation is happening inside the molecule[21,22].

For 2BBA

HOMO energy = -0.05900a.u LUMO energy = - 0.26717 a.u HOMO-LUMO energy gap = 0.20817a.u

5. Conclusions

An entire vibration investigation of 2BBA was completed in view of count at the HF and B3LYP with 6-311++G(d,p) premise set and their frequencies were looked at. DFT-B3LYP technique comes about shows great concurrence with trial esteems. B3LYP/6-31G level figuring uncovers the structure of 2BBA. The nearness of amide bunch indicates twisting in symmetry of the ring, the bond length and bond edge and different vibration frequencies of Bromine molecule were talked about. The vibration frequencies, IR forces, sub-atomic properties and thermo dynamical properties were analyzed by HF/6-311++G(d p) and B3LYP/6-311++G(d p) premise sets. The impact of bromine on vibrations has been examined.

The assignments made at more elevated amounts of hypothesis with just sensible deviations from the exploratory esteems, appear to be right. DFT and HF strategies used to decide the structure and its properties. The execution of the HF and DFT ascertained bond parameters and consonant vibrations predicts great concurrence with accessible exploratory information

References

[1] J.Gawronski, H.Kołbon, M.Kwit, Stereochem. J.7(2), 85(2002).

[2]Andreas Ludwig, Manfred Dietel, GitySchAfer, Karin Muller, HelmuthHilz. Cancer Res. 50, 2470(1990).

[3]C.Lee, W.Yang, R.G Parr, Phys. Rev. B37, 785(1988).

[4]N.PanchenkoYu, N.F.Stepanov, Russ. J. Phys. Chem, 69, 535(1995).

[5] M.J.Frisch, et al., GAUSSIAN 98, Revision A 11.4, Gaussian, Inc, Pittsburgh PA, (2009).

[6]F.A.Cotton, Chemical Applications of Group Theory, Wiley Interscience, New York, (1971).

[7]G.Rauhut, P.Pulay, J. Phys. Chem. 99, 3093(1995).

[8] M.Karabacak, M. Kurt, A. Atac, J. Phys. Org. Chem. 22, 321 (2009).

[9] B.Smith,Infrared Spectral Interpretation, A. Systematic approach, CRC press, Washington, DC, (1999).

[10]F.R.Dollish,W.G.Fateley,F.F. Bentley,Characteristic Raman Frequencies of Organic Compounds, Wiley, New York, (1974).

[11]Bismi Edwin, I. Hubert Joe, Spectrochim. Acta A97,838(2012).

[12] George, Socrates, Infrared and Raman Characteristic Group Frequencies – Tables and Charts, third ed., John Wiley & Sons, Chichester, (2001).

[13]G.Socrates, Infrared and RamanCharacteristic Group Frequencies–TablesandCharts, third ed., Wiley, Chichester, (2001)

[14] N.M.O'Boyle, A.L. Tenderholt, K.M. Langer, J. Comput. Chem. 29, 839(2008).

[15]V.Arjunan, M.Kalaivani, P.Ravindran, S. Mohan, Spectrochim. Acta A79, 1886(2011).

[16]R.A.Yadav, I.Ssing, I.Ind.J.PureAppl.Phys.17,625(2003).

[17]M.Szafran, A.Komasa, E.B.Adamska, J. Mol. Struct. (Theochem) 827, 101 (2007).

[18]T.Vijayakumar, H. Joe, C.P.R. Nair, V.S. Jayakumar. J. Chem. Phys. 343,83(2008).

[19] M.Karabacak, M.Cinar, M. Kurt, Spectrochim. Acta A, 74, 1197(2009).

[20]K.Fukui,Science**218**,747(1982).

[21] Bismi Edwin, I.Hubert Joe, Spectrochim. Acta A97,838(2012).

[22]D.L. Pavia, G.M. Lampman, G.S. Kriz, J. Vondeling, (Physics Ed.), Introduction

to Spectroscopy: A Guide for Student of Organic Chemistry.