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Nanocrystalline ZnO particles doped with Mn(II) ions were prepared by a forced 
hydrolysis method of zinc acetate dihydrate and manganese acetate tetrahydrate, under 
reflux, in buthanol. The precipitate obtained was separated by centrifugation at 9.000 rpm 
and purified by refluxing in water. The dopant percentage was 1, 2.5 and 5%. The 
qualitative composition of the nanopowder has been evidenced in the elemental EDS 
maps. Optical investigation shows that the Mn doping in ZnO lattice leads to a decrease in 
the near band edge position due to the introduction of new unoccupied states by Mn 3d 
electrons. The luminescence of ZnO is quenched by increasing the dopant ions percentage. 
At doping rate of 1% Mn in the ZnO lattice a tenfold decrease in intensity of luminescence 
was observed, along with modification of the luminescence pattern. Further increases of 
dopant percent from 1% to 5% had as result a decrease of only 30% in the luminescence 
intensity. The photocatalytic activity was investigated against methylene blue. The 
increase of Mn percentage leads to a better photocatalytic activity.  
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1. Introduction 
 
In the last decade various oxide semiconductors [1-4] have been used as catalyst, 

phosphor, gas sensor, photocatalyst, UV-photoprotector, varistor or in dye-sensitized solar cells [5-
10]. The field of applications is determined by the electrical, optical and structural properties of the 
semiconductors. Among them, ZnO offers some unique optoelectronic properties due to its wide 
bandgap of 3.3 eV and large excitonic binding energy of 60 meV.  

Due to the special optical properties, high transparencies in the visible domain coupled 
with high absorbance of the UV radiation, ZnO has been toughly investigated as a coating 
material, from paints [11], to sunscreens [12] and fabric coating [13]. 

The photocatalytic activity of ZnO is well known and has been investigated versus a wide 
variety of pollutants. There are some application where a high photocatalytic activity is desirable 
[14], but there are also some application where ZnO capacity to degrade various organic substrate 
is an impediment, like f abric or paper coating. 

Doping of ZnO with transition metals (TM) can lead to ferromagnetic properties at room 
temperature (RT FM), might form dilute magnetic semiconductors (DMSs) and is an effective way 
to tune the properties of ZnO [15,16]. The doping TM will create some unoccupied states that will 
consequently alter of the band gap energy [17]. The presence of a dopant ion in the ZnO lattice can 
influence also the photocatalytic capacity of the nanoparticles, in both directions, giving an easy 
method to tune this property to suit various applications [18-20]. 

In our previous works, we have prepared pure and doped ZnO by force hydrolysis, sol-gel 
or pyrosol methods [21-23], and we manage to tune the luminescent properties of ZnO by thermal 
treatment [24]. 
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In the case of Mn-doped ZnO it is known that the solubility of the dopant in ZnO lattice 
depends on many factors (the preparation method and conditions, the annealing temperature, the 
doping concentration, and even the grain size). All factors are related to the structural defects that 
may exist in the ZnO nanoparticles, which will influence also the electronic and optoelectronic 
properties. The intrinsic defects commonly found in ZnO are zinc interstitials (Zni), zinc vacancies 
(VZn), oxygen interstitials (Oi), oxygen vacancies (VO), oxygen antisites (OZn), and zinc antisites 
(ZnO), as were detailed described by Kohan et al [25]. 

Samples with different Mn(II) content (1-5%) were synthesized by adapting the previously 
reported forced hydrolysis method in alcohol [21], from zinc acetate dihydrate and manganese 
acetate tetrahydrate, under reflux. The samples were structurally characterized by means UV-Vis 
and PL spectrometry, XRD, TEM, HRTEM and SAED. The photocatalytic activity was 
investigated against methylene blue. 

 
 
2. Experimental procedure 
 
Zinc acetate dihydrate, Zn(CH3COO)2·2H2O and Mn(CH3COO)2·4H2O with 99.9% purity, 

were obtained from Merck. Buthanol was used as received from Sigma without further 
purification. 
  

2.1 Mn(II) (1%) doped ZnO synthesis 
 
2.173g (9.9 mmoles) Zn(CH3COO)2 2H2O and 0.0245g (0.1 mmoles) 

Mn(CH3COO)2·4H2O  were dissolved in 50 mL buthanol. The solution was then kept for 12h on a 
thermostatic bath at 120oC under magnetic stirring. The light brown colloidal precipitate formed 
was then separated by centrifugation at 9.000 rpm and washed several times with ethanol. The 
light-brown powder was dried at 105oC for 30 min in the ambient atmosphere following the 
removal of supernatant. 

We have prepared three doped ZnO samples and a pure control sample by this method 
(0%, 1%, 2.5% and 5%). 

 
2.2 Experimental techniques 
a) Electron Microscope Images. The transmission electron images were obtained on 

ultrasonated powdered samples using a TecnaiTM G2 F30 S-TWIN high resolution transmission 
electron microscope from FEI, equipped with STEM/HAADF detector, EDX (Energy dispersive 
X-ray Analysis) and EFTEM - EELS (Electron energy loss spectroscopy) operated at an 
acceleration voltage of 300 KV obtained from a Shottky Field emitter with a TEM point resolution 
of 2 Å and line resolution of 1.02 Å. 

b) X-ray Diffraction. X-ray powder diffraction patterns were obtained with a Shimadzu 
XRD6000 diffractometer, using Cu Kα (1.5406 Å) radiation operating with 30 mA and 40 kV in 
the 2θ range 10–70o. A scan rate of 1o min-1 was employed. 

c) Photoluminescence spectra. Photoluminescence spectra (PL) were measured with a 
Perkin Elmer P55 spectrometer using a Xe lamp as a UV light source at ambient temperature, in 
the range 200-800 nm, with all the samples in solid state. The measurements were made with scan 
speed of 200 nm·min-1, slit of 10 nm, and cut-off filter of 1% for ZnO sample and without any cut-
off filter for Mn doped ZnO samples. An excitation wavelength of 320 nm was used. 

d) Diffuse reflectance spectra measurements were made with a JASCO V560 
spectrophotometer with solid sample accessory, in the domain 200-800nm, with a speed of 
200nm·min-1. 

e) Photocatalytic activity was determined against methylene blue (MB) solution, 10-4 %, 
by irradiation with an Hg lamp. Samples of 0.0250 g powder were inserted in 20 mL solution of 
MB. Samples were allowed to stay 30 min in dark to reach the adsorption equilibrium. After that, 
at defined time intervals a sample of 2mL was taken out and its UV-Vis spectra was recorded. 
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approximately 10nm, which have a slight tendency to aggregates as nanorods with dimensions of 
10nm x50 nm.  

Additional information about the structures of the nanoparticles was found through 
detailed analysis with HRTEM. The HRTEM image, figure 2b, shows clear lattice fringes of 
interplanar distances of d = 1.62 Å and d = 2.59 Å/(0 0 2) for nanocrystalline ZnO, corresponding 
to Miller indices (1 1 0) and (0 0 2) respectively, of crystallographic planes of hexagonal ZnO. In 
addition, the regular succession of the atomic planes indicates that the nanocrystalites are 
structurally uniform and crystalline with no amorphous phase present. 

 

 
Fig. 2. (a) TEM images of 5% Mn doped ZnO polyhedral shaped particles - SAED pattern 
of planes of hexagonal structure ZnO [ASTM 80-0075]; (b) HRTEM with the (1 1 0) and  
                                        (0 0 2) crystallographic planes of ZnO 

 
 

From the selected area diffraction pattern obtained on ZnO nanopowder, we can state that 
the only phase identified is the crystalline hexagonal form of ZnO [ASTM 80-0075]. Moreover, 
the SAED image of 5% Mn doped ZnO nanoparticles confirms the Miller indices of characteristic 
crystalline structures identified by XRD (inset of figure 2a). 

In order to correlate the microstructure and the distribution of O, Zn and Mn, qualitative 
analyses, e.g. elemental map and spectrum of the same region were recorded. Elemental mapping 
of the 5% Mn-doped sample revealed a uniform distribution of various ions in the sample (Fig.3). 

 

 
 

Zn O Mn 
 

Fig. 3. Elemental mapping of 5%Mn-doped ZnO sample showing the presence of (a) Zn (b) O and (c) Mn 
ions, respectively. 
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The decreases of both absorption maximums, figure 6, indicate that all samples have a 
photocatalytic activity. Nevertheless, the degradation pathway of MB is different for pure ZnO and 
Mn–doped ZnO. 

While in the case of ZnO sample, both MB and (MB)2 maximums are decreasing at the 
same rate, in the case of Mn doped ZnO, the MB absorption maximum falls abruptly, while the 
(MB)2 maximum decrease at a slower rate than in the case of ZnO. This indicates a rapid 
degradation of MB in the presence of Mn-doped ZnO, part of it being transformed in the dimer 
(MB)2. The dimer is also degraded, after 4h of irradiation, the sample with Mn-doped ZnO 
containing slightly more (MB)2 than the sample with ZnO, but no MB. 

Because of the dimerization, the size of the molecule increases, this having a direct 
influence on photocatalysis process, through diffusion step. The decrease of the absorption 
maximum at 614 nm indicates that the Mn-doped ZnO possesses a photonic efficiency for 
degradation [46]. 
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Fig. 7. Comparative evolution of lg(C0/C) vs irradiation time 

 
The study shows that although both samples (pure and doped ZnO) have photocatalytic 

activity, the mechanism is different. While ZnO equally degrades MB and (MB)2, the doped Mn-
ZnO transforms MB to (MB)2 and afterwards strongly degrades the dimer. Overall, the Mn-doped 
samples have a better photocatalytic activity than pure ZnO, figure 7. 

 
 
4. Conclusions 
 
A synthetic method for the pure ZnO and Mn-doped ZnO nanocrystalline powder using 

non-basic hydrolysis has been presented. The forced hydrolysis produces a nanopowder that once 
dried at 120oC, contains ZnO, with no detectable secondary phases. The Mn ions were 
homogenously incorporated in the ZnO lattice, XRD analysis indicating existence of a single-
phase compound, wurtzite. TEM and XRD data sustain the formation of a single phase, 
monodisperse crystalline Mn-doped ZnO nanopowder.  

The band gap value of doped samples is smaller than the band gap value of the bulk ZnO, 
and it is decreasing with as the Mn dopant percent increases.  

On UV excitation with 320nm the doped samples exhibited an overall diminished 
emission, the blue-green photoluminescence being much stronger than the excitonic one.  

Also with increasing of Mn percent, we notice an increase in the photocatalytic activity.  
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Both effects, the quenched luminescence and better photocatalytic activity can be 
explained by an increasing in the surface defects associated with lattice distortion induced by Mn 
ions. 
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