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The Wiener index (W) and the Schultz molecular topological index (MTI) are based on the 
distances between the vertices of molecular graphs. In this paper, we find the bounds of 
Schultz index for pentachains by the terms of Wiener index. 
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1. Introduction 
 
Topological indices are real numbers on graph parameters (vertex degree, distance 

between vertices, etc.) which have been defined during studies on molecular graphs in chemistry. 
The Wiener index was introduced by Wiener for characterization of alkanes in 1947[1]. The 

wiener index of molecular graph G  defined as follows[2]: ij
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the element of the distance matrix of  and  is the number of vertices in G . The mathematical 
properties and chemical applications of Wiener index are outlined in [3, 4, 5]. 
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The molecular topological index of a molecular graph G  was introduced by Schultz in 
1989[6] and we call Schultz index, abbreviated MTI. It is defined as: 

 where  is the degree of vertex  in G  and  is the 

element of the adjacency matrix of G . The interesting chemical applications are found for Schultz 
index[7, 8]. It has been demonstrated that 
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MTI  and W  are mutually related for certain classes of 
molecular graphs[9, 10].The explicit relation between MTI  and W  for trees is defined by 
Kelvin[9]. If G is a tree with  vertices, then:  p
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 For an arbitrary graph , Schultz index can be expressed as follows[11]:  G
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In this paper, we establish a simple relation between MTI  and W  for a pentachains. 
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2.  Pentachains 
 
Pentachains are chains that composed exclusively of pentagonal rings. Any tow rings have 

either one common edge or have no common vertices.If they have one common edge then said to 
be adjacent. A pentachain with  rings has h 23= +hp  such that 4+h  vertices have 2  degree 
and  vertices have 3  degree. Examples of pentachains are shown in Figure 1.  22 −h
 

            
   

Fig.  1:  hh LH ,
  
We can represent these pentachains as represented in Figure 2 which we see :  hL

 
 

 
 

Fig.  2:  hL
  
 

3.  Wiener index of  and  hL hH
 
 If  has  rings. the first G h 1−h  rings are named  and the last  rings are named 

. Then,  is common in 
1S 1−h

2S )( 21 SS I 2−h  ring. We compute the Wiener index of G  with  ring:  h
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 By the figure of , we have:  hL
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 Therefore, we have for :  3≥h
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⎪
⎩

⎪
⎨

⎧
++−
++−

++

++

evenbehhWWW
oddbehhWWW

hhh

hhh

,5027=242
,4927=242

12

12

                              (6) 

 
We have tow recessive equations with first values, , ,  and . 
Then: 

15=1W 55=2W 133=3W 262=4W

 
Theorem 3.1 The Wiener index of linear pentachains,  with h  rings is:  hL
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 The Wiener index of  had computed in [12]:  hH
Theorem 3.2 The Wiener index of  is equal to:  hH
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 Where .  2= −hn
 
 

4. Bounds for the schultz index 
 
The degree of vertices are  or  in this graph. Therefore if we write the Schultz index of 

 to respect the degree of vertices, we have:  
2 3
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 If degree of  is  and  has at least  rings, then G  has  vertices with distance 1, at least 
4 vertices with distance 2 and at least 6 vertices with distance 3 or more than 3. Hence, if  one 

vertex of degree 3 and 
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Lemma 4.1 The linear pentachain  has the maximum Wiener index and the pentachain  has 
the minimum Wiener index among all pentachain graphs.  

hL hH

Proof. If G  is the pentachain graph and  are in . The  is maximum, if the 
number of pentagonal which tow edges of them counted for computation of . This is 
concluded easily from the Figure 2. 
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In the  has the maximum number and  has the minimum number of these pentachains 
among the pemtachains. Therefor the result conclude.  
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 By above Lemma: 
I) the lower bound for MTI  is: 
i) h is odd:  

 140)414(3
36
1=2)3122(9

4
1=)( 2323 −++−++ ppphhhGW  

For , 14≥p 140)412(4
9
20>3 −+ ppp . Then:  

)
20

69(
36
1=)

20
9(3

36
1<)(

33
3 pppGW +                                             (11) 

 Therefor:  

3
1

)
69
720(> Wp                                                                       (12) 

 ii) h is even:  
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 Therefore, the lower bound for MTI  by (4.2)  is:  
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 II) The upper bound for MTI  is:  
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For , 14≥p 90)15(
18
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quantity in 
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 Then:  
Theorem 4.2 The bounds for Schultz index of pentachains are:  
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