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With the objective of decreasing analysis time and retaining good efficiency (UPLC-
MS/MS) is an outstanding analytical approach for speedy biomedical analysis.   The aim 
of this study was to develop and validate a simple, rapid, sensitive and specific UPLC-
MS/MS method for quantification of CZT in human plasma. After a simple protein 
precipitation using acetonitrile and methanol, CZT and paroxetine (IS) were separated on 
Acquity UPLC BEHTM C18 column (50  2.1 mm i.d., 1.7 µm, Waters, USA) using a 
mobile phase composed of methanol:0.1%(v/v) ammonium hydroxide (80:20) pumped at a 
flow rate of 0.4 mL min-1. CZT and IS were eluted at 0.46 and 0.66 min, respectively. The 
mass spectrometric determination was carried out using an electrospray interface operated 
in the positive mode with multiple reaction monitoring mode. The mass transitions m/z 
450.0 → 260.0 and m/z 330.11 → 192.11 were used to measure CZT and internal 
standard, respectively. Mass transition m/z 450.0 → 176.99 was used as qualifying ion for 
CZT. The method was linear in the concentration range of 5–500 ng mL-1 with correlation 
coefficient of 0.997 and lower limit of quantitation of 5 ng mL-1. This study represents the 
first report describing the determination of CZT in human plasma by UPLC-MS/MS 
method. The proposed method is superior to the previously reported LC-MS methods in 
terms of the sensitivity and simplicity as the method described herein is based on simple 
one step protein precipitation for sample preparation and isocratic flow of mobile phase. 
The run time was only 2 min which is suitable for high-throughput analysis.  
 
(Received February 12, 2014; Accepted May 16, 2014) 
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1. Introduction 

 
Crizotinib {CZT, 3-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-(1-piperidin-4-

ylpyrazol-4-yl)pyridine-2-amine, Fig. 1} is a novel small-molecule inhibitor of tyrosine kinases. It 
functions by competitive binding with the ATP-binding pocket of target kinases. Some patients 
with non-small cell lung carcinoma have a chromosomal rearrangement that generates a fusion 
gene between (echinoderm microtubule-associated protein-like 4' (EML4) and anaplastic 
lymphoma kinase (ALK), which results in constitutive kinase activity that contributes to 
carcinogenesis and seems to drive the malignant phenotype. The kinase activity of the fusion 
protein is inhibited by crizotinib (1-4) and caused tumor shrinking in 90% of lung cancer patients 
with non-small cell lung cancer (NSCLC) carrying anaplastic lymphoma kinase (ALK) fusion 
gene (5). Based on two successful clinical multi-center studies, CZT was granted an accelerated 
approval by the Food and Drug Administration (FDA) on August 26, 2011 (under the trade name 
of Xalkori® capsules made by Pfizer, Inc.) for the treatment of patients with advanced local or 
metastatic NSCLC that is ALK-positive as detected by FDA-approved test (Abbot Molecular, Inc.) 
                                                            
*Corresponding author: tanykash@yahoo.co.in 
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2.2 Instrumental parameters and samples 
 
Liquid chromatography. - The instrument consisted of a binary pump, autosampler, 

quaternary solvent manager, degasser and column heater-cooler. The mobile phase consisted of 
methanol: 0.1% (v/v) ammonium hydroxide (80:20), and used at a flow rate of 0.4 mLmin-1. The 
separating coloumn used was C18 Acquity UPLC BEHTM with following dimensions (50  2.1 
mm, i.d., 1.7 µm, Waters, USA) maintained at 25 °C. In the partial loop mode the injection volume 
was 5 µL with autosampler temperature of 8 °C. 

 Mass spectrometric conditions. - Waters TQD triple quadrupole mass spectrometer with 
Waters Acquity liquid chromatography system (Waters, USA) was used for the study. Positive 
mass ionization mode with multiple reaction monitoring (MRM) using an electrospray interface 
(ESI) to carry out spectrometric detection for both CZT and IS was performed. Desolvating gas 
(nitrogen) was used as a gas at a flow rate of 500 L h-1 at a desolvation temperature set at 300 °C 
with source temperature of 150 °C. Capillary voltage of 3.10 kV was found to be optimum for the 
study. Flow rate for the collision gas (argon) used was 0.1 mL min-1. The parameters used for the 
MS analyzer were as: HM1 and LM1 resolution 8.0 and 5.0; HM2 and LM2 resolution 10.0 and 
10.0 respectively; dwell time 0.146 s; ion energy 1 0.2 V; ion energy 2 0.5 V. The collision energy 
and cone voltage were optimized for each analyte to maximize the signal corresponding to the 
major transition observed in the MS/MS spectra, following the fragmentation of the [M+H]+ ions 
corresponding to the selected compounds. The UPLC-MS/MS system was controlled by Mass 
Lynx software (SCN 805; Version 4.1, Waters, USA.  

 
2.3 Calibration standards and quality control samples.  
 
CTZ and paroxetine (IS) standard stock solutions were prepared in methanol (final 

concentration 1 mg mL-1). Standard stock solution of CTZ was serially diluted to prepare working 
solutions in the required concentration range with diluent methanol–water (60:40, v/v). The 
calibration standards were prepared by spiking with working solutions yielding concentration 
range from 5 to 500 ng mL-1 for CTZ.  CTZ quality control (QC) stock solutions have been 
prepared separately in methanol–water (60:40, v/v). QC samples at four different levels: 5 ng mL-1 
lower limit of quantitation (LLOQ), 15 ng mL-1 low quality control (LQC) (LQC, within three 
times of the LLOQ), 100 ng mL-1 middle quality control (MQC) and 400 ng mL-1 high quality 
control (HQC) were prepared similarly as calibration standards. Upper limit of quantitation 
(ULOQ) is the highest standard of the calibration curve. Internal standard working solution was 
prepared by diluting the paroxetine stock solution in methanol to get 50 µg mL-1. 

 
2.4 Sample preparation.  
 
Plasma samples stored at around −80 ○C were thawed, left for 1 hour and vortexed for 30 s 

at room temperature before extraction to ensure homogeneity. To 50 µL of plasma sample, 20 µL 
of IS (50 µg mL-1) (except for blank sample) was added. The samples were vortex mixed for about 
30 s and then 120 µL of methanol was added to it and vortex mixed again for another 30 seconds. 
After vortex mixing further 800 µL of acetonitrile was added to the sample. The samples were 
again vortex mixed gently for 1.5 min and then cold centrifuged for 10 min at 10000 rpm. After 
centrifugation, 800 µL of supernatant was transferred into UPLC vial, evaporated to dryness and 
reconstituted with 100 µL of combination of methanol and acetonitrile in the ratio of 50:50 and 5-
µL volumes (in partial loop with needle over fill mode) of the sample were subjected to the 
analysis by UPLC–MS/MS. 

 
2.5 Method validation 
 
A full method validation was performed according to guidelines set by the United States 

Food and Drug Administration US-FDA (15) and European Medicines Agency (EMEA) 
guidelines (16). The validation of this procedure was performed in human plasma in order to 
evaluate the method in terms of selectivity, linearity of response, accuracy, precision, recovery, 
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dilution integrity and stability of analytes during both short-term sample processing and long-term 
storage. Selectivity, linearity, accuracy and precision exercise was also performed in human 
plasma. For toxicological studies use of at least one qualifying ion in addition to the internal 
standard is required for the confirmatory purposes when selected ion monitoring is used for 
identification of an analyte. Therefore qualifying ion m/z 450.0 → 176.99 was measured along 
with the target ion m/z 450.0 → 260.0. 

 
2.6 System suitability and carryover effect.  
 
System performance experiment was performed by injecting six consecutive injections 

using aqueous standard mixture of CZT and internal standard at the start of each batch during the 
method validation using LQC and MQC solutions. Carryover effect was evaluated to ensure that 
the rinsing solution used to clean the injection needle and port was able to avoid any carry‐forward 
of injected sample in subsequent runs. The design of the experiment comprised blank plasma, 
LLOQ and upper limit of quantitation (ULOQ) followed by blank plasma to check for any possible 
interference due to carryover. 

 
2.7 Linearity and standard curve.  
 
The linearity of the method was determined by a weighted least square regression analysis 

of standard plot associated with an seven-point standard curve (5-500 ng mL-1).. The calibration 
curves were generated by plotting area ratio (CZT/IS) as a function of CZT concentration.  
Calibration curves from accepted three precision and accuracy batches were used to establish 
linearity.  Curves were best fitted using a least square linear regression model Back-calculations 
were made from these curves to determine the concentration of CZT in each calibration standard 
and the resulting calculated parameters were used to determine concentrations of analyte in quality 
control samples. The determination coefficient R2 > 0.98 was desirable for all the calibration 
curves.  

 
2.8 Limit of detection and limit of quantitation.   
 
The limit of detection (LOD) was determined by the signal to noise ratio. and lower limit 

of quantitation (LLOQ) of the method was the lowest standard on the calibration curve. The LOD 
was determined as the lowest concentration level resulting in the peak area of three times of the 
base line noise.  

 
2.9 Precision and accuracy.  
 
Intra- and inter-day accuracies expressed as a percentage of deviation from the respective 

nominal value. The precision of the assay was measured by relative standard deviation (%) at four 
concentrations in human plasma. Intra-day precision and accuracy were assessed by analyzing six 
replicates of the quality control samples at four levels during a single analytical run. The inter-day 
precision and accuracy were assessed by analyzing 18 replicates of the quality control samples at 
each level through three precision and accuracy batches runs on 3 consecutive validation days. The 
deviation at each concentration level from the nominal concentration was expected to be within 
±15.0% except LLOQ, for which it should not be more than 20.0%. Similarly, the mean accuracy 
should not deviate by ± 15.0% except for the LLOQ where it can be ± 20.0% of the nominal 
concentration.  

 
2.10 Extraction recovery.  
 
To investigate extraction recovery, a set of samples (n=6) at each LQC, MQC and HQC 

was prepared by spiking CTZ into unique lots plasma at 15, 100, and 400 
ng mL-1, respectively. Each of the samples were processed as per the procedure sample preparation 
protocol. A second set of plasma samples was processed and spiked post-extraction with the same 
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concentrations of CTZ and IS that actually existed in the pre-extraction spiked samples. Extraction 
recovery for each analyte was determined by calculating the ratios of the raw peak areas of the pre-
extraction spiked samples to those of the samples spiked after extraction.  

 
2.11 Selectivity and matrix effect. 
 
Six different batches of blank human plasma were tested to identify the peaks due to the 

possible biogenic plasma components. Among the analyzed batch, plasma batch showing no or 
minimal interference at the retention time of analytes and internal standards was selected.  Samples 
were spiked with standard CZT at lower limit of quantification level (5 ng mL-1) and paroxetine at 
2 µg mL-1 and processed using the proposed extraction protocol and analyzed after spiking. The 
assessment of matrix effect (co‐eluting, undetected endogenous matrix compounds that may 
influence the analyte ionization) was performed and was evaluated by analyzing LLOQ sample. 
The matrix effect was evaluated by analyzing LLOQ sample. The matrix factor and matrix effect 
was calculated via the formula:  

Matrix factor = X2/X1 
Matrix effect (%) = [(X1 – X2) / X1] × 100 (%) 
Where X1= response of neat concentrations and X2 is response of post-spiked 

concentrations  
 
2.12 Stability and dilution integrity.  
 
Under a variety of storage and processing conditions six replicates of QC samples at low 

and high concentrations were assessed to establish stability of CTZ in plasma. Freeze-thaw 
stability, bench top stability (short term stability), auto sampler storage stability and long term 
stability was determined at low and high concentration quality control samples using six aliquots 
at each. To establish the bench-top stability plasma samples were exposed to room temperature for 
∼6 h, which exceeded the actual sample processing procedure time. For accessing freeze/thaw 
stability three cycles of freeze (at around −80 ○C)–thaw (room temperature) was carried out. To 
establish stability of the samples in the autosampler, reconstituted QC samples were stored for ∼48 
h under autosampler condition (maintained at 8 ○C) before being analyzed. Determination of long-
term stability was carried out by storing test samples at around −80○C for 60 days. For the 
stability of stock solutions and working solutions of crizotinib and paroxetine were kept at room 
temperature for 24 h and in the refrigerator temperature (below 10 ○C) for 30 days prior to 
analysis. Freshly spiked calibration standards were used to perform all the stability tests. If the 
deviation was within ±15% from the mean calculated concentration of stability quality control, the 
samples were considered stable in plasma. In order to validate the dilution test, dilution integrity 
experiment was carried out on higher analyte concentrations (above ULOQ i.e. 500 ng mL-1), 
which may be encountered during real subject samples analysis. Blank matrix was spiked with a 
concentration of 1.8 times of that of the ULOQ to give a concentration of  900 ng mL-1. This 
sample was further diluted with blank matrix by applying the dilution factor of 2 and 4, 
respectively, and their concentrations were calculated against the freshly prepared calibration 
curve. Six replicate samples were run for each dilution factor. If deviation was within ± 15 % of 
nominal value and RSD ≤ 15 % at both diluted levels, the integrity of the samples was considered 
to be maintained. 

 
2.13 Ruggedness/robustness. 
 
Robustness was examined by evaluating the influence of small variation in the assay 

variables on its analytical performance. In these experiments, one parameter was changed whereas 
the others were kept unchanged. Ruggedness was also tested by applying the proposed method to 
the assay of CZT using the same operational conditions by two different analysts (analyst 1 and 2) 
with two different columns of Acquity UPLC BEHTM C18 column (50  2.1 mm i.d., 1.7 µm, 
Waters, USA). In each time, the recovery percentage was calculated for the LQC and HQC 
samples.  
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3. Results and discussion 
 
3.1 Optimization of chromatographic conditions  
 
Initial feasibility experiments of various mixture(s) of organic solvents such as acetonitrile 

and methanol along with Millipore water, both having 0.1 % formic acid, were tested. Also these 
organic solvents along with 0.1% ammonium hydroxide were tried by altering flow-rates (range 
0.2–0.4 mL min-1) to optimize effective chromatographic conditions for CZT and IS. The best 
conditions were achieved with an isocratic elution of mobile phase comprising methanol: 0.1% 
(v/v) ammonium hydroxide (80:20) at a flow-rate of 0.4 mL min-1, on Acquity UPLC BEH® C18 
column (50  2.1 mm i.d., 1.7 µm). The selected conditions were found to be suitable for the 
determination of electrospray response for CZT and IS (Table I). 

 
Table I. Chromatographic and linearity parameters for the analysis of CZT by the proposed method 

 
Parameter Value 
Range (ng ml-1)  5-500 
Intercepta  0.05145 ± 0.001 
Slopea 0.03265 ± 0.0023 
Correlation  coefficient  0.9986 
LLOQ (ng ml-1) 5.00 
LOD (ng ml-1) 1.80 

a n=3 
 
 
UPLC-MS/MS operation parameters were carefully optimized for the determination of 

CZT (Table I). Analytes were detected by tandem mass spectrometry using MRM of precursor–
product ion transitions with 0.146 s dwell time. Precursor-to-product ion transitions of m/z 450.0 
→ 260.0, and m/z 330.11 → 192.11 were used to measure CZT and internal standard. Mass 
transition m/z 450.0 → 176.99 was used as qualifying ion for CZT. A standard solution (100 ng 
mL-1) of CZT and the paroxetine were directly infused along with the mobile phase into the mass 
spectrometer with ESI as the ionization source. The mass spectrometer was tuned initially in both 
positive and negative ionization modes for CZT. It was observed that the signal intensity of 
positive ion was much higher than that of negative ion. Parameters, such as capillary and cone 
voltage, desolvation temperature, ESI source temperature and flow rate of desolvation gas and 
cone gas, were  optimized to obtain the optimum intensity of protonated molecules of CZT and IS 
for quantification. Among the parameters, capillary and cone voltage, especially cone voltage, 
were important parameters. The precursor ion intensity increased significantly when cone voltage 
was raised gradually. Lastly, analytes produced the strongest ion signals when cone voltage was 
set up at 48 V. The cone voltage was optimized using cone ramp (0-100) V and it was noticed that 
when the cone voltage was lesser than 48 V, the ion signals decreased rapidly. The collision 
energy was investigated from 2 to 80 eV to optimize the response of product ion, and the best 
values were found to be 28 eV and 42 eV for the chosen product ions m/z 260 and m/z 176.99 
respectively. For IS, m/z spectra at 192.11 was produced at optimum collision energy of 26 eV.  
The product ion spectra of CZT and IS are shown in Fig. 2. 
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Table II. Intra- and inter-day precision and accuracy of CZT in human plasma. 
 

Spiked CZT 
(ng mL-1) 

Run Human plasma     

    
Recovery 

(%) 
Precision (RSD, %) 

Intra-day variationa 

5.00 1 100.83 7.2 

 2 100.23 11.0 

 3 105.50 6.8 

15.00 1 103.30 7.1 

 2 103.81 8.9 

 3 104.96 7.9 

100.00 1 101.08  3.0 

 2 100.41  2.4 

 3 99.73 4.3 

400.00 1 101.07  2.4 

 2 103.52 1.9 

 3 100.95 2.3 

Mean Recovery 102.11 ± 1.98   

Inter-day variationb 

5.00  103.30 2.3 

15.00  105.13 1.8 

100.00  100.41  0.7 

400.00   101.85 1.4 

Mean Recovery 102.67 ± 2.02  
At each concentration: a n=6, b n=18. 
 

3.4 System suitability and carryover effect 
 
Overall RSD value for peak area of CZT and that of IS did not exceed 4.6 % for CZT and 

1.8 % for IS and the overall RSD for retention time of CZT and IS didn’t exceed 0.32 and 0.26 % 
respectively. These values were within the prescribed limits of 5% for peak area and 2% for 
retention time. The ion ratio of target ion i.e. m/z 450.0 → 260.0 to that of qualifying ion m/z 450.0 
→ 176.99 did not exceed the acceptance criteria of 20% and the RSD of the ion ratios did not 
exceed 3.54%. The carry over effect was evaluated as described in the experimental section and no 
carryover effect was observed during method validation. 

      
3.5 Selectivity and matrix effect. - 
 

Selectivity of the method was assessed by comparing the chromatogram of blank plasma with the 
corresponding spiked LLOQ sample. Six different batches of blank human plasma were tested to 
identify the peaks due to the possible biogenic plasma components. Thus the method looks to be 
selective enough for determination of CZT and paroxetine in plasma. Representative 
chromatograms obtained from blank plasma showing no interference at the retention time of 
analyte and IS are shown in Figs. 3a and e, respectively. Representative chromatogram of LLOQ 
and IS are shown in Figs. 3b and f, respectively, whereas representative chromatogram of LQC 
and HQC are shown in Figs. 3c and d, respectively.  
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Table III. Stability and dilution integrity data of CZT in human plasma. 
 

Stabilitya  
 

Spiked conc.  
(ng mL-1) 

Recovery  
(%) 

Precision (RSD, %)a 

Bench top (6 h) 15.00 99.72 6.1 

 400.00 100.42 2.0 

Freeze thaw (3 cycle) 15.00 99.53 6.3 

 400.00 99.51 2.8 

Auto sampler (48 h) 15.00 98.98 6.6 

 400.00 99.49 2.4 

60 days at -80 ◦C 15.00 97.90 6.2 

 400.00 98.10 2.8 

30 days at 8 ◦C 15.00 100.67 8.7 

 400.00 101.33 3.0 

Dilution integrity 225.00 99.40 4.1 

  450.00 99.93 2.1 

Mean Recovery 99.58 ± 0.97  
a n=6. 
 

3.8 Extraction recovery 
 
At three QC concentration levels (15, 100 and 400 ng mL-1), the percent recoveries of 

CZT obtained from plasma are given in Table IV. The mean recovery for CZT was 90.6± 1.4 %. 
The mean recovery for the IS paroxetine at the concentration employed was 80.0 ± 4.7%. These 
results indicate that the extraction efficiency for CZT using protein precipitation method was 
satisfactory, consistent and concentration independent. 

 
Table IV. Recovery data of CZT and paroxetine in human plasma 

 
Compound Spiked conc. (ng mL-1) Recovery (%)a 

CZT (analyte) 15.00 89.10 ± 7.1 
 100.00 91.15 ± 3.1 
 400.00 91.66 ± 2.6 
 Mean ± SD 90.64 ± 1.3 

Paroxetine (IS) 2000.00 80.39 ± 4.7 
a Mean±SD, n=6 

 
3.9 Robustness and ruggedness 
 
There was no significant change recovery of CZT when mobile phase composition, flow 

rate, or temperature were changed slightly. The mean recovery % values ranged from 96.56 ± 1.98 
- 104.48 ± 1.89 (Table V) which indicate the method is robust.  Ruggedness of the proposed 
method was evaluated and it was found the results obtained from analyst to analyst and column to 
column variations were reproducible, as the mean recovery % values ranged from 96.57 ± 7.47 – 
101.57 ± 7.47 (Table V).  
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Table V: Robustness and ruggedness of analytical method 
 

Robustness   

Condition Modification Recovery (% ± SD)a 

Mobile phase 
composition 

(ratio) 

79:21 98.30 ± 2.19 

80:20 104.48 ± 1.89 

81:19 101.70 ± 1.70 

Mobile phase flow 
rate 

(mL min-1) 

0.44 101.67 ± 0.93 

0.40 97.34 ± 1.55 

0.36 98.68 ± 1.75 

Temperature 
(°C) 

20.00 96.56 ± 1.98 

25.00 101.18 ± 1.02 

30.00 99.35 ± 0.80 
Mean Recovery 99.91 ± 2.53 

Ruggedness   

Instrument  
Spiked 

Concentarion Recovery (% ± SD)a  

Column I 
15.00 97.23 ± 7.23 

400.00 99.21 ± 5.75 

Column II 
15.00 100.65 ± 4.19 

400.00 98.63 ± 4.78 

Analyst I 
15.00 101.85 ± 3.72 

400.00 99.81 ± 2.68 

Analyst II 
15.00 98.81 ± 7.95 

400.00 96.57 ± 7.47 
Mean Recovery 99.09 ± 1.71 

a n=5. 
 

 
4. Conclusions 
 
A novel simple, economical high-throughput and highly sensitive UPLC-MS/MS method 

was successfully developed and validated for the determination of CZT in human plasma. The 
method involved simple one step protein precipitation method for plasma sample preparation for 
analysis and short runtime (2 min).  The proposed method might be of use for pharmacokinetic and 
toxicokinetic study for CZT in humans. 
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