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A C4C8 net is a trivalent decoration made by alternating squares C4 and octagons C8. 
Such a covering can be derived from square net by the leapfrog operation. The PI 
polynomial of a molecular graph G is defined as A +Σx|E(G)|−N(e), where N(e) is the 
number of edges parallel to e, A=1/2|V(G)|(|V(G)|+1)-|E(G)| and summation goes over 
all edges of G. In this paper, the PI polynomial of TUC4C8(S)  Nanotubes and Nanotorus 
are computed. 
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1. Introduction 
 
A graph G consists of a set of vertices V(G) and a set of edges E(G). The vertices in G 

are connected by an edge if there exists an edge UiUj ∈ E(G) connecting the vertices Ui and Uj in 
G such that Ui, Uj ∈ V(G). In chemical graphs, the vertices of the graph correspond to the atoms 
of the molecule, and the edges represent the chemical bonds. The number of vertices and edges in 
a graph will be denoted by |V(G)| and |E(G)|, respectively. The distance between a pair of 
vertices u and w of G is denoted by d(u,v).  

A topological index is a real number related to a graph. It must be a structural invariant, 
i.e., it is fixed by any automorphism of the graph. There are several topological indices have been 
defined and many of them have found applications as means to model chemical, pharmaceutical 
and other properties of molecules. The Wiener index W is the first topological index to be used in 
chemistry. It was introduced in 1947 by Harold Wiener, as the path number for characterization 
of alkanes, [16]. In a graph theoretical language, the Wiener index is equal to the count of all 
shortest distances in a graph, [9,16]. 

Let G be a graph and e = uv an edge of G. neu(e|G) denotes the number of edges lying 
closer to the vertex u than the vertex v, and nev(e|G) is the number of edges lying closer to the 
vertex v than the vertex u. The Padmakar–Ivan (PI) index of a graph G is defined as PI(G) 
=  where PI(f) = nfu(f|G) + nfv(f|G) see for details [8,10-12]. In this definition, edges 

equidistant from the two ends of the edge e = uv are not counted. We call such edges parallel to e. 
The number of edges parallel to e is denoted by N(e). 
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The PI polynomial, introduced by Ashrafi, Manoochehrian and Yousefi-Azari [5], of a 
connected graph G is defined as PI(G,x)=  where N(u,v)=N(f) if f=uv∈E(G) 

and N(u,v)=0 if uv∉E(G). We can see that  (1) 
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In a series of papers [1-4,6], Ashrafi and Loghman computed PI index of some nanotubes 
and nanotori. In [7,13] we computed polynomial of zig-zag and armchair  polyhex nanotubes and 
nanotori. Here we continue this progress to compute the PI polynomial of the TUC4C8(S) polyhex 
nanotubes and nanotorus. Our notation is standard and mainly taken from [14,15]. Throughout 
this paper T = TUC4C8(S)[4p,q] an arbitrary C4C8 nanotubes and T'= T[2p,2q] denotes a C4C8 
nanotorus, see Figure 1, 2. 

 
 
2. PI Polynomial of  TUC4C8[4p,q] 
 
In this section, the PI polynomial of the graph T = TUC4C8[4p,q] were computed. From 

Figures 1(a) and 1(b), it is easy to see that |E(T)| = 2p(3q-1). In the following theorem we 
compute the PI polynomial of the molecular graph T in Figure 1. 

 

 
 

(a). The TUC4C8(S) Nanotubes (b). A TUC4C8(S) Lattice with p = 4 and q = 8 
Fig. 1 

 
 

(a). The C4C8(S) nanotorus 
 

(b). A C4C8(S) nanotorus Lattice 

Fig. 2 

 
Theorem 1. The PI polynomial of TUC4C8(S)[4p,q] nanotube is as follows: 
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Proof. To compute the PI polynomial of T, it is enough to calculate N(e). To do this, we consider 
three cases that e is vertical, horizontal or oblique. If e is horizontal a similar proof as Lemma 1,2 
in [2] shows that N(e)=2q and N(e)=2p for vertical edge e. Also, by Lemma 3 in [2], if e is an 
oblique edge in the (2k-1)th row, 1≤ k ≤ p, of the TUC4C8(S)[4p,q] lattice of T, then N(e) 

= . 
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Therefore we consider Eij denote the oblique edge of T in the ith row and jth column. We first 
notice that for every i, 1≤ i ≤ q, N(E(2i-1)1) = N(E(2i-1)2) = ⋅⋅⋅ = N(E(2i-1)(2p)), Figure 1(b). Suppose A, 
B and C are the set of all horizontal, vertical and oblique edges of T. It is easy to see that 
|A|=|C|=2pq and |B|=2p(q-1). Then Since T is symmetric, we have: 
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For every e in C, we have three cases: 
Case 1. q≤p. In this case, we have: 
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Case 2. p<q<2p. In this case, we have: 
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Case 3. q≥2p. In this case by Figure 1, we have: 
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which completes the proof.                                                                                                        
Corollary 1. The PI index of TUC4C8(S)[4p,q] nanotube is as follows: 

PI(TUC4C8(S)[4p,q]) 
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where X = 36p2q2 – 28p2q +8 p2 - 8pq2 and Y = 36p2q2 – 36p2q – 4pq2 + 4pq + 4p3 + 4p2. 
 
 



750 
 

3. PI Polynomial of C4C8(S) nanotorus 
 
In this section, the PI polynomial of the graph T' = T[2p,2q] were computed. From 

Figures 2(a) and 2(b), we can see that |E(T)| = 6pq. In the following theorem we compute the PI 
polynomial of the C4C8(S) nanotorus. 
Theorem 2. The PI polynomial of C4C8(S) nanotorus is computed as follows: 
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Proof. To compute the PI polynomial of T', it is enough to calculate N(e). By Lemma 2, 3 and 4 
in [6] we have: 

N(e)=   
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Let X, Y and Z are the set of all horizontal, vertical and oblique edges of T'. It is easy to see that 
|X|=|Y|=|Z|=2pq. Then Since T' is symmetric, we have: 
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which completes the proof.                                                                                                       
Corollary 2. Suppose T' is a C4C8(S) nanotorus. Then  we have: 
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