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The problem for predicting DNA binding and non-DNA binding proteins from protein 
sequence information is still an open problem in bioinformatics. It is further becoming 
more important as the number of sequenced information grows exponentially over time. 
Sequence similarity matrices are a useful approach to provide functional annotation, but its 
use is sometime limited, prompting the development and use of machine learning methods. 
We implemented a novel approach for predicting the DNA binding and non-DNA binding 
proteins from its amino acid sequence using artificial neural network (ANN). The ANN 
used in this study is a feed-forward neural network with a standard back propagation 
training algorithm. Using 62 sequence features alone, we have been able to achieve 
72.99% correct prediction of proteins into DNA binding/non-DNA binding (in the set of 
1000 proteins). For the complete set of 62 parameters using 5 fold cross-validated 
classification, ANN model revealed a superior model (accuracy = 72.99%, Qpred = 
73.952%, sensitivity = 81.53% and specificity = 72.54%).  
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1. Introduction 
 
The rapid progress in genome analysis has made available the complete genome sequences 

of many organisms. Subsequent annotation of the genes enabling their function to be inferred from 
sequence homology is an important next step in the post-sequence analysis of genome. In that 
regard, X-ray crystallographic and NMR spectroscopic analyses of DNA binding proteins have 
provided valuable information about the general features of protein-DNA interactions. However, it 
is both time-consuming and costly. Particularly, the number of newly found protein sequences is 

now increasing rapidly. For instance, the number of total sequence entries in SWISS-PROT was 
only 3939 in 1986; recently, it was expanded to 272212 (increasing by more than 69 times in just 
two decades!) according to release 53.2 (26 June 2007) of SWISS-PROT 
(http://www.expasy.org/sprot/relotes/relstat.html). With such a sequence explosion, it has become 
vitally important to develop an automated and fast method to differentiate the DNA binding 
protein from the non-DNA binding proteins.  
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It is generally accepted that protein structure is determined by its amino acid sequence [1] 
and that the knowledge of protein structures plays an important role in understanding their 
functions. To understand the roles relating amino acid sequence to three-dimensional protein 
structure is one of the major goals of contemporary molecular biology. A priori knowledge of 
protein to bind with DNA has become quite useful from both an experimental and theoretical point 
of view. A generic approach to this problem consists of transferring the annotation from sequences 
of known DNA binding proteins to uncharacterized proteins [2]. The transfer mechanism might be 
subdivided in two steps: (i) to establish the list of known DNA binding proteins with significant 
sequence similarity to the uncharacterized sequence; (ii) to select the known sequence(s) from 
which the annotation is transferred [3]. The first step is usually performed with sequence 
alignment tools such as FASTA [4] or BLAST [5]. When sensitivity is critical, alternative tools 
such as PSI-BLAST [6] and hidden Markov models [7] can be used. Finding homologous proteins 
can also be accomplished using alignment independent sequence comparison tools, which have 
been developed to overcome the limitation arising from the assumption of contiguity between 
homologous segments [8,9]. However, annotating the uncharacterized protein sequence as DNA 
binding and non-DNA binding proteins requires highly automated computational methods linking 
experimental data. These methods must be able to discriminate the distinct catalytic function 
encapsulated in the protein’s structure or in its primary sequences. To this end, the machine 
learning methods (MLMs) seem to be best suited for the task. MLMs also have a certain degree of 
flexibility regarding data inputs, allowing them to expand progressively to meet the requirements 
of rapidly accumulating mountain of data generated from genomics research. The most often used 
methods of MLMs are support vector machine (SVM), artificial neural network (ANN), hidden 
Markov model (HMM), decision tree (DT) and so on. Among these, ANNs are particularly 
attractive due to its ability for pattern recognition [10] to handle large or small datasets, large input 
spaces [11] and its greater accuracy compared to simple BLAST or HMM methods [12,13]. 
Currently, there is no reliable systematic way for recognizing DNA binding proteins. For example, 
Luscombe and Thronton [14] analyzed amino acid conservation and the effects of mutations on the 
binding capacity within protein-DNA complexes. Pabo and Nekludova [15] developed geometrical 
models for characterizing side chain-base interactions and in related studies. Nadassy et al. [16] 
analyzed the importance of the interface surface area between the protein and DNA for protein-
DNA recognition.  

 

 
Fig. 1. Configuration of artificial neural network (ANN) used to develop binary primary 

sequence descriptor model. 
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The family of DNA binding proteins is one of the most populated and studies amongst the 
various genomes of bacteria, archea and eukaryotes. Most of the proteins, such as the eukaryotic 
and prokaryotic transcription factors contain independently folded units (domains) in order to 
accomplish their recognition with the contours of DNA. It is now clear that the majority of these 
DNA-binding scaffolds, which are in general relatively small, less than 100 amino acid residues, 
belong to large number of structural families with characteristic sequences and three-dimensional 
designs or conformations [17]. Determination of three-dimensional structure is the traditional 
approach to functional classification of proteins. However, as structure determination is still 
another problem for itself, the need for a faster method of classification is obvious [18].   

Strategically, we have develop a neural network, fully automated computational method 
capable of recognizing and classifying uncharacterized proteins as DNA binding or non-DNA 
binding.  

 
2. Materials and methods 
 
2.1 Training data 
 
To discriminate between the DNA binding and non-DNA binding proteins, a set of 1000 

proteins consisting of 500 non-redundant DNA binding proteins and the same number of non-
redundant non-DNA binding proteins were used for training and testing. The DNA binding 
proteins dataset used in this study was obtained from PDB database (http://www.rcsb.org). It 
consisted of almost equal number for each of four major classes of DNA binding proteins (125 
zinc finger, 125 leucine zipper, 125 helix-turn-helix, 125 homeo box). The pairwise sequence 
identities in the datasets was less than 70% for both DNA binding and non-DNA binding protein 
classes.  

 

 
 

Fig. 2. ROC curves for binary ANN network systems. 
 
 
2.2 Sequence derived parameters calculation and selection 
 
A set of 62 parameters (Table 1) for each protein sequence were calculated using 

PEPSTAT (EMBOSS suite) ftp://emboss.open-bio.org/pub/EMBOSS [19] and used as input to 
ANN. The values of these 62 parameters independently calculated for DNA binding and non-DNA 

http://www.rcsb.org/
ftp://emboss.open-bio.org/pub/EMBOSS


778 
 

 

binding showed clear distinction between the two classes (Table 1). The normalized values were 
used to generate ANN models for binary prediction. 

 
Table 1. 62 ‘PEPSTAT (EMBOSS)’ primary sequence descriptors used in the study. 

 
DNA binding Non-DNA 

binding 
DNA binding Non-DNA 

binding 
Sequence 
derived 

parameters Max Min Max Min 

Sequence 
derived 

parameters Max Min Max Min 
Charge 0.207588 0.00182 0.20947 0.00419 N_mole% 0.7186 0.1200 0.9.91 0.2300 

Isoelectric 
point 

0.11811 0.09159 0.1209 0.09186 N_DayhoffStat 0.1671 0.0987 0.2114 0.1078 

A_mole% 0.104656 0.0427 0.1288 0.03857 P_mole% 0.9572 0.3450 3.6556 0.5680 
A_DayhoffStat 0.29032 0.019 0.33257 0.027 P_DayhoffStat 0.1841 0.0089 0.703 0.02908 

B_Mole% 0.275 0.024 0.376 0.036 Q_mole% 0.585 0.0871 1.5106 0.1098 
B_DayhoffStat 0.928 0.494 0.979 0.41 Q_DayhoffStat 0.15 0.0098 0.3873 0.0129 

C_Mole% 0.18828 0.02881 0.21186 0.03 R_mole% 1.0682 0.0088 2.1256 0.0187 
C_DayhoffStat 0.2189 0.0335 0.2464 0.045 R_DayhoffStat 0.218 0.02389 0.434 0.0452 

D_Mole% 0.1989 0.0017 0.0902 0.0011 S_mole% 0.9035 0.1796 0.2034 0.0012 
D_DayhoffStat 0.0292 0.001 0.0109 0.0009 R_DayhoffStat 0.129 0.0257 0.3148 0.0389 

E_Mole% 1 0.00659 2.0339 0.0089 T_mole% 1.0497 0.3091 1.4352 0.1203 
E_DayhoffStat 0.3448 0.02154 0.7013 0.0154 T_DayhoffStat 0.1721 0.0507 0.2353 0.0092 

F_Mole% 0.8147 0.0154 1.206 0.0015 V_mole% 0.15 0.04484 0.17647 0.0289 
F_DayhoffStat 0.1481 0.0152 0.2193 0.0652 V_DayhoffStat 0.2273 0.0679 0.2674 0.0546 

G_Mole% 1.018 0.0147 1.8615 0.0254 W_mole% 0.4598 0.00245 0.4839 0.0254 
G_DayhoffStat 0.1697 0.0215 0.3102 0.0145 W_DayhoffStat 0.3537 0.0021 0.3722 0.0215 

H_Mole% 0.9195 0.1277 1.0044 0.0596 X_mole% 0.4562 0.025 0.3262 0.0254 
H_DayhoffStat 0.2554 0.0355 0.279 0.0101 X_DayhoffStat 0.5263 0.0562 0.3215 0.025 

I_Mole% 0.25 0.00769 0.36923 0.00530 Y_mole% 0.6135 0.0159 2.4615 0.0521 
I_DayhoffStat 0.2976 0.0092 0.4396 0.006 Y_DayhoffStat 0.1804 0.0154 0.724 0.00987 

K_Mole% 0.6513 0.00894 1.0271 0.021 Z_mole% 0.2222 0.0089 0.3262 0.0154 
K_DayhoffStat 0.3257 0.0456 0.5136 0.0598 Z_DayhoffStat 0.894 0.1256 0.265 0.03652 

L_Mole% 1 0.2077 1.0377 0.0089 Tiny Mole% 0.6 0.15569 0.6389 0.16239 
L_DayhoffStat 0.2222 0.0462 0.2306 0.0564 Small Mole% 0.75 0.4012 0.77119 0.32479 

M_Mole% 1.018 0.0591 2.0455 0.00115 Aliphatic 
Mole% 

0.31481 0.14808 0.32903 0.02542 

M_DayhoffStat 0.1542 0.00213 0.3099 0.0002 Acidic 0.1159 0.02569 0.13489 0.03654 
Charged Mole 

% 
0.19444 0.03139 0.19101 0.0321 Basic 0.1869 0.04521 0.12365 0.02564 

Basic mole% 0.2628 0.0424 0.2581 0.0021 Charged 0.30125 0.00586 0.25634 0.01245 
Acidic Mole% 0.5169 0.0456 1.2346 0.0268 Aliphatic 0.25692 0.04521 0.1667 0.00698 

Aromatic 
Mole% 

0.24521 0.04918 0.29231 0.08541 Polar Mole% 0.54479 0.15 0.68182 0.13846 

Non-polar 
Mole% 

0.85 0.45521 0.86154 0.31818 Aromatic 0.10256 0.04956 0.1558 0.07852 

 
2.3 Fivefold cross-validation 
 
A limited fivefold cross-validation was used to test the predictability of ANN model. Here 

the dataset was randomly divided into five subsets, each containing equal number of protein 
sequences. Each set was a balanced set that consisted 50% of DNA binding and 50% of non-DNA 
binding proteins. The dataset was divided into training and testing sets. The training set consisted 
of five subsets. The network was validated for minimum error on testing set to calculate the 
performance measure for each fold of validation. This process was repeated five times to test for 
each subset. The final prediction result was averaged over five testing sets. 
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2.4 ANN model for prediction of DNA binding/non-DNA binding proteins using  
       sequence derived features 
 
In this study, we had used standard back-propagation ANN configuration consisting of 62 

inputs and 1 output node in order to discriminate between DNA binding and non-DNA binding 
proteins from the testing sets (Figure 1). For each sequence in the training and testing sets, we had 
transformed 62 network input parameters into the normalized values varying from 0 to 1. 
Similarly, the output parameters from the ANN were normalized to [0:1] range. The numbers of 
nodes in the hidden layer were varied from 1 to 11 in order to find out the optimal network that 
allowed most accurate separation of DNA binding and non-DNA binding proteins in the testing 
sets (Table 2). During the learning phase, a value of 1 was assigned for the DNA binding sequence 
and 0 for non-DNA binding sequence. For each configuration of the ANN 119 independent 
training runs were performed to evaluate the average predictive power of the network. The 
corresponding counts of the false/true positive and negative predictions were estimated using 0.1 
and 0.9 cut-off values for DNA binding and non-DNA binding proteins respectively. Thus, a 
protein sequence from the testing set was considered correctly predicted by the ANN only when its 
output values ranged from 0.9 to 1.0. For each non-DNA binding protein of the testing set, the 
corrected prediction was assumed if the corresponding ANN output lies in between 0 to 0.1. Thus, 
all network output values ranging from 0.2 to 0.9 have been ultimately considered as incorrect 
predictions (rather than undetermined or non-defined). 

 
 

Table 2. Parameters of specificity, sensitivity, accuracy and positive predictive values for 
prediction of DNA binding and non-DNA binding proteins by the artificial neural network 

with the varying number of hidden nodes. 
 

Hidden Nodes Accuracy Specificity Sensitivity Q(Pred) 
1 0.5869 0.6523 0.7423 65.23 
3 0.6213 0.6452 0.5013 72.13 
5 0.5522 0.5864 0.5123 55.23 
7 0.6976 0.6878 0.7535 68.32 
9 0.6435 0.6020 0.7632 65.18 

11 0.6235 0.6425 0.7123 69.25 
 

2.5 Performance measures 
 
The prediction results of ANN model developed in the study were evaluated using the 

following statistical measures. 
1. Accuracy of the methods: The accuracy of the prediction for neural network models 

were calculated as follows: 

T
NPQACC

+
= , where T = (P + N + O + U) 

Where P and N refer to correctly predicted DNA binding and non-DNA binding, and O and U 
refer to over and under predictions respectively. 
 2. Sensitivity (Qsens) and specificity (Qspec) of the prediction methods is defined as: 

UP
PQsens +

=  

ON
NQspec +

=   

3. Qpred (Probability of correct prediction) is defined as: 

100×
+

=
OP

PQpred  
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3. Results 
 
3.1 Predictability of DNA binding proteins with sequence derived features 
 
The ANN model (62-7-1) was trained with the sequence derived features (62 parameters) 

calculated using PEPSTAT. Applying a fivefold cross-validation test using five datasets, we found 
that the network was reached an overall accuracy of 72.99 ± 6.86%. The prediction results were 
presented in Table 3. The other performance measures were: Qpred = 73.952 ± 13.123%, sensitivity 
= 81.53 ± 6.73% and specificity = 72.54 ± 6.39%. The predicted output for non-DNA binding 
proteins was in the range of 0.0 to 0.1 and for DNA binding proteins, it was 0.9 to 1.0 (Table 3). 
This illustrated that 0.1 and 0.9 cut-offs values provided adequate separation of two bioactive 
classes using ANN.  
 

Table 3. Results of DNA binding/non-DNA binding prediction methods, using fivefold cross-validation. 
 

Fivefold 
cross 

validation 

Accuracy Specificity Sensitivity Q(Pred) Prediction range 
(DNA binding) 

Prediction range 
(Non-DNA 

binding) 
C1 0.8.20 0.8632 0.7271 85.12 0.6726 – 1.00 0.00 – 0.5240 
C2 0.7430 0.7791 0.8580 70.61 0.5079 – 1.00 0.00 – 0.5658 
C3 0.7002 0.6024 0.8001 71.61 0.4257 – 1.00 0.00 – 0.5386 
C4 0.7140 0.6567 0.8901 62.28 0.3592 – 1.00 0.00 – 0.6486 
C5 0.6906 0.7259 0.8015 80.14 0.4748 – 1.00 0.00 – 0.5836 

Mean 0.7299 ±  
0.0686 

0.7254 ± 
0.0639  

0.8153 ± 
 0.0673 

73.952 ± 
13.123 

  

      
 
3.2 Evaluation of prediction accuracy  
 
From a practical point of view, the most important aspect of a prediction method is its 

ability to make correct predictions. As prediction methods are never perfect, one always faces the 
dilemma of choosing between making few false-positive predictions and having a high sensitivity, 
that is correctly identifying as many positive examples as possible. This tradeoff can be visualized 
as what is known as the receiver output characteristic (ROC) curve, in which the sensitivity is 
plotted as a function of 1-specificity by varying the score threshold used for making positive 
predictions (Figure 2). The performance of the network was evaluated by calculating the area 
under the ROC curve. The area under the curve was 0.88; revealing a better discrimination of 
network system. 

 
 
4. Discussion 
 
The functional properties of uncharacterized protein sequences are usually determined 

either by biochemical analysis of eukaryotic and prokaryotic genomes or by microarray analysis. 
These experimental methods are both time-consuming and costly. With the explosion of protein 

entries in databanks, we are challenged to develop an automated method to quickly and accurately 
determine the functional attribute for a newly found protein sequence: is it a DNA binding or a 
non-DNA binding protein? If it is, to which subfamily class does it belongs to? The answers to 
these questions are important because they may help deduce the mechanism and specificity of the 
query protein, providing clues to the relevant biological function. Although it is an extremely 
complicated problem and might involve the knowledge of three-dimensional structure as well as 
many other physicochemical factors, some quite encouraging results were obtained by a 
computational method established on the basis of amino acid composition alone [20]. Since the 
amino acid composition of a protein does not contain any of its sequence-order information, a 
logical step to further improve the method is to incorporate the sequence-order information into the 
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predictor. To realize this, the most straightforward way is to represent the sample of a protein by 
its entire sequence, the so-called sequential form. 

The results demonstrated that the developed ANN-based model for binary prediction of 
DNA binding/non-DNA binding proteins is adequate and can be considered an effective tool for 
‘in silico’ screening. The results also demonstrated that the sequence derived parameters readily 
accessible from the protein sequences only, can produce a variety of useful information to be used 
‘in silico’; clearly revealed an adequate and good predictive power of the developed ANN model. 
There is strong evidence, that the introduced sequence features do adequately reflect the structural 
properties of proteins. The structure of a protein is an important determinant for the detailed 
molecular function of proteins, and would consequently also be useful for prediction of DNA 
binding proteins. This observation is not surprising considering that the calculated parameters 
should cover a very broad range of proprieties of bound atoms and molecules related to their size, 
polarizability, electronegativity, compactness, mutual inductive and steric influence and 
distribution of electronic density, etc.  

The ANN model with 62 input-nodes, 7 hidden-nodes and 1 output nodes was able to 
classify the uncharacterized protein sequence into DNA binding and non-DNA binding protein 
with an accuracy of 72.99%. Presumably, accuracy of this approach operating by the sequence 
derived features can be improved even further by expanding the parameters or by applying more 
powerful classification techniques such as Support Vector Machines or Bayesian Neural 
Networks. Use of merely statistical techniques in conjunction with the sequence parameters would 
also be beneficial, as they will allow interpreting individual parameter contributions into “DNA 
binding likeness”.  

 
 
5. Conclusion 
 
The results of the present work demonstrate that the sequence derived features with 

binary-ANN classification system (62-7-1) appear to be a very fast protein classification 
mechanism providing good results, comparable to some of the current efforts in the literature. The 
developed ANN-based model for classification proteins into DNA binding and non-DNA binding 
can be used as a powerful tool for filtering out DNA binding proteins from the proteome 
databases. 
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