Various Cu⁺, Mg²⁺ and S²⁻ ionic concentration effects on a novel Cu₂ZnMgS₄ quaternary compound synthesis for various scientific applications

K. Sudha, R. Sasireka, T. Chitravel, T. P. Kumar*

^aDepartment of Physics, Anna University Regional Campus Madurai, Tamilnadu, India

^bDepartment of Physics, Saraswathi Narayanan College, Perungudi, Madurai, Tamilnadu, India

Copper zinc magnesium sulfide semiconducting material (Cu₂ZnMgS₄) compound is slightly new in electronics, opto-electronics and photo emissive field research. So that, we examined the Cu₂ZnMgS₄ compound formation characteristics step by step using the Copper sulfate (CuSO₄.XH₂O), Zinc sulfate (ZnSO₄.XH₂O), Magnesium sulfate (MgSO₄.XH₂O) and Sodium sulfide Na₂S salt solutions. Characterizations such as pH, Electrical conductivity (EC), TDS were carried out for several concentrations. Further its optics properties of Cu₂ZnMgS₄ compound in liquid form were investigated through photo-colorimeter measurements (at various color λ including mixed band wavelengths), photo-fluorometer (using various primary and secondary filters) and UV-Vis spectrophotometer (at wavelength range of 300 to 900 nm) measurements. The investigated long term results are presented and discussed in this research article.

(Received August 15, 2023; Accepted December 19, 2023)

Keywords: Cu₂ZnMgS₄, Cu⁺ions, Zn²⁺ ions, Mg²⁺ ions, S²⁻ ions, UV-visible spectrophotometer, Electrical conductivity, Photo-fluorometer, Photo-colorimeter, TDS value

1. Introduction

Copper sulfide nanostructures synthesis and its biological applications more recently reported by Noor ul Ain et al. [1]. Nanotechnology applied in many fields including cancer treatment. Nano technology applications cover many medical applications such as drug delivery, bio-imaging and the therapeutic nature of nanomaterials. Nano-medicines reached better approach for diagnosing and treating cancer owing to its enhanced efficiency [2-4]. Cu_xS_y material nanostructures are promising materials for both sensors and bio medical imaging applications. The major use of Cu_xS_y nano particles is not just limited to cancer curing applications but they can also be used for the treatment of many other in vitro antibacterial diseases owing to their versatility and multifunctional properties including more holes concentration photo conducting activity [5]. With the rapid development of various energy technologies, electric energy production and its storage has become the protagonist of the energy era [6]. More and more high-efficient and environment friendly new energy production sources and energy-storage devices are needed to meet the present day field requirements.

Super capacitors with dominant properties such as high-power density, a long cycle life, and a fast-charging capacity have attracted much attention of electrochemical researchers and materials science researchers in recent years. In this regard the effect of copper sulfide stoichiometric coefficient and morphology on electrochemical performance was reported most recently. In this reported research article, CuS, Cu₇S₄, Cu₉S₅, Cu_{7.2}S₄, and Cu₂S with the same morphology were successfully synthesized by the hydrothermal method. This report showed that the energy storage capacity of copper sulfide with the same morphology increased with respect to the increase of the copper sulfide stoichiometric coefficient [7-9]. Further the preparation of nano-

^{*} Corresponding authors: premnobelforum@gmail.com https://doi.org/10.15251/JOR.2023.196.793

copper sulfide and its adsorption properties for 17α -ethynyl estradiol was reported in year 2020. In this research work, the tubular like nano-copper sulfide structures was synthesized by hydrothermal method. The synthesized copper sulfide materials were used as an adsorbent for 17α -ethynyl estradiol (EE2) and exhibited very excellent adsorption properties [10].

Peter A. Ajibade and Nandipha L. Botha reported the synthesis, optical and structural properties of copper sulfide nanocrystals from single molecule precursors and the obtained optical studies showed that the absorption spectra of the as-prepared nanoparticles are blue-shifted and the emission maxima showed a narrower size distribution, which indicates a size quantum effect. The X-ray diffraction patterns showed the hexagonal morphology CuS nanocrystals with estimated particle sizes of 17.3–18.6 nm. Further the TEM images showed the CuS nanoparticles has spherical in shape and fairly mono dispersed which exhibited the average crystallite sizes of 3–9.8 nm. Both X-ray diffraction studies and TEM results showed relatively similar nano particle size [11].

The synthesis and studies on metal chalcogenide materials have received considerable attention in the last decades due to quantum confinement effects associated with their confined crystallites sizes. This quantum confinement showed many novel physical, chemical and physic-chemical properties that make them useful in light-emitting p-n junction diodes, p-n junction solar cells, fuel cells, drug delivery, and used for catalysts in industrial transformations [12–27]. Further the group 12 chalcogenide materials such as Z_nS and C_dS nanoparticles have been widely studied but C_dS toxicity limits some further possible applications. As of result of the inherent toxicity of group 12 metal chalcogenides, copper sulfide nanocrystals are being explored for different applications. CuS nanoparticles are also attractive because they exist in different stoichiometric compositions and its corresponding applications with varying its crystalline phases.

Copper sulfide nanoparticles were successfully synthesized on the base of functionalized nitrile butadiene rubber (FNBR) at room temperature by the successive ionic layer adsorption and reaction (SILAR) method using $CuSO_4 \times 5H_2O$, $CuCl_2 \times 2H_2O$ aqueous solutions as a copper precursors; $Na_2S \times 9H_2O$ and thiourea $[CS(NH_2)_2]$ aqueous solutions as sulfur precursors. Synthesis and characterization of $Cu_{2-x}S$ structures by different chemical routes for electronic applications explained by João Lima et al. [28-29]. Synthesis and characterization of copper zinc iron sulphide (CZFS) thin films were reported by Joseph Onyeka Emegha et al. [30]. Synthesis and characterization of copper zinc sulfide ($cu_xzn_{1-x}S$) ternary thin film by using acidic chemical bath deposition method was reported in recent research article [31].

Quarternary selenide and sulfide based compounds played a very important role in optoelctronics and electronics filed. Among this copper indium gallium diselenide (CIGS) is one of the important direct band gap I-III-VI₂ thin film absorber material composed of copper, indium, gallium, and selenium. Band gap of the CIGS thin film can modified from 1.1 to 1.6 eV by tuning the gallium and Indium composition. Very high energy conversion efficiency of CuInGaSe₂ (CIGS) solar cell devices has been largely issued for the last decades. The CIGS devices have proved superior laboratory scale photo power conversion efficiency (PCE) over 18% and a successful installation of plant scale level with megawatt power conversion for the past decades. In our previous research article we reported the surface and optical properties of Cu₂InGaSe₂ thin film absorber layer for high efficiency solar cells [32-41]. In the present research article we did a long term and real time research on various Cu⁺, Mg²⁺ and S²⁻ ionic concentration effects on a novel Cu₂ZnMgS₄ quaternary compound synthesis for various scientific applications. Few hundred real time reactions conducted over many years and the real time measured results are presented and discussed.

2. Experiment

For this experiment CuSO₄.XH₂O (0.1 M), ZnSO₄.XH₂O (0.1 M), MgSO₄.XH₂O (0.1 M) positive (+ ionic) elements concentrations and Na₂S (0.1 M) negative (- ionic) elements concentrations were kept constant for all of our present research work. For each experiment this 0.1 M each salt solution taken in a small size micro filler and gentle drop wise added in reaction bath with constant pressure to maintain each drop almost constant. Characterizations such as pH,

electrical conductivity (EC), TDS were carried out for several concentrations. Digital pH meters measurements were taken from two various instrumentations for getting perfect result and precise calibration. Further three standard pH buffers (i) pH buffer 4.00, (ii) pH buffer 6.86 and (iii) pH buffer 9.18 were used sequentially during each sample measurement.

After each measurement the both pH meter and EC meters cleaned by distilled water, alcohol and then gentle cleaned by wet filter sheet. To avoid contamination related instrumental measurement error, both meters kept in distilled water for 1 minute after each measurement completed. Even TDS measurement is a base basic measurement here we also used TDS meter measurements to compare the EC value difference and on the other hand TDS value simultaneous variation. UV-Vis transmittance measurements were taken for all the material compound concentrations at real time in the wavelength range of 300nm – 950 nm. Further its optics properties of Cu₂ZnMgS₄during compound formation in liquid form and liquid state to solid form conversion were investigated through photo-colorimeter measurements (at various color λ including mixed band wavelengths).Photo luminescence properties of each Cu₂ZnMgS₄ compound formation concentrations real time investigated by digital photo-fluorometer (2 primary filters 5840 A⁰ and 5113 A⁰ and three secondary filters used) instrumentation.

3. Results and discussion

Actually real time measurement mostly not done much in worldwide materials science and engineering filed. Because it is directly contaminate and spoil the measurement instrument system. Due to this reason most of research work measurements conducted after material compound fabrication. In this research article we reported our several years long term and real time systematic investigated interesting results on Cu₂ZnMgS₄ compound. Real time measurement most advantages are (1) we can get liquid state property, (2) (liqid + solid) or colloidal state property and finally (3) solid state compound property at one instant within few minutes time interval.

3.1. Various sodium sulfide (Na₂S) concentrations (pH, TDS and EC value)

Figure 1 (a, b, c) showed the pH value, TDS value and Electrical conductivity (EC) real time measured values of Cu₂ZnMgS₄ compound. Here CuSO₄.XH₂O (1-drop), ZnSO₄.XH₂O (1-drop), MgSO₄.XH₂O (1-drop) positive (+ ionic) elements concentrations were kept constant and only Na₂S negative (- ionic) elements concentrations varied from 1-drop to 4-drops. This real time measurement showed both pH, EC and TDS values showed similar increasing trend.

The pH values suddenly vary from pH-3.6 to pH-5.1 with respect to Na₂S negative (ionic) elements concentrations increment. In case of TDS and EC measurement value Na₂S 1-drop to 2-drops not much change observed. But Na₂S 3-drop to 4-drops during Cu₂ZnMgS₄ compound formation showed drastically increased TDS value because TDS value changed from 430 ppm to 450 ppm and 450 ppm to 480 ppm. Further Na₂S 3-drop to 4-drops during Cu₂ZnMgS₄ compound formation showed drastically increased EC value because electrical conductivity value changed from 860 μ s/cm - 900 μ s/cm and 900 μ s/cm - 960 μ s/cm.

Fig. 1 (a, b, c) The pH value, TDS value and Electrical Conductivity (EC) real time measured values during Cu₂ZnMgS₄ compound formation (Various Na₂S concentrations).

3.2. Various magnesium sulphate (MgSO₄.XH₂O) concentrations (pH, TDS and EC value)

Figure 2 (a_1 , a_2 , a_3) showed the pH value, TDS value and electrical conductivity (EC) real time measured values of Cu₂ZnMgS₄compound formation. Here CuSO₄.XH₂O (1-drop), ZnSO₄.XH₂O (1- drop) positive (+ ionic) elements, Na₂S (3-drop) negative ionic element concentrations were kept constant and only MgSO₄.XH₂Opositive (+ ionic) elements concentrations varied from 1-drop to 10-drops. This real time measurement showed both EC and TDS values showed similar increasing trend. But pH value showed opposite decreasing trend.

The pH values suddenly decreased from pH-4.1 to pH-3.93 with respect to MgSO₄.XH₂O positive (+ ionic) elements concentrations increment from 1-drop to 9-drops and at 10-drops again pH value started to increase. In case of TDS measurement value MgSO₄.XH₂O 1-drop to 10-drops drastic change observed. The TDS value reached from 400 ppm – 1400 ppm. During Cu₂ZnMgS₄ compound formation EC value also showed drasticchange because electrical conductivity value changed from 750 μ s/cm - 2700 μ s/cm. Even within few drops MgSO₄.XH₂O change showed this much variation in EC and TDS value and we hope this is one of a most important result observation for future researchers.

796

Fig. 2. (a1, a2, a3) The pH value, TDS value and Electrical Conductivity (EC) real time measured values during Cu₂ZnMgS₄ compound formation (Various MgSO₄.XH₂O concentrations).

3.3. Various copper sulphate (CuSO₄.XH₂O) concentrations (pH, TDS and EC value)

Figure 3 (a_4 , a_5 , a_6) showed the pH value, TDS value and Electrical Conductivity (EC) real time measured values during Cu₂ZnMgS₄ compound formation. Here MgSO₄.XH₂O (10-drop), ZnSO₄.XH₂O (1- drop) positive (+ ionic) elements, Na₂S (3-drop) negative ionic element concentrations were kept constant and only CuSO₄.XH₂O positive (+ ionic) elements concentrations varied from 1-drop to 5-drops. This real time measurement showed both EC and TDS values showed similar increasing trend. But pH value showed completely different trend.

The pH values suddenly decreased from pH-3.82 to pH-3.79 with respect to CuSO₄.XH₂O positive (+ ionic) elements concentrations increment from 1-drop to 2-drops and then pH value again reached pH-3.83 at 3-drops again pH value started to decrease for 4-drops pH-3.81 and for 5-drops pH-3.8. Three times this measurement repeated and the obtained results are same. In case of TDS measurement value CuSO₄.XH₂O 1-drop to 5-drops drastic change observed. The TDS value reached from 900 ppm – 1250 ppm. During Cu₂ZnMgS₄ compound formation EC value also showed drastic change because electrical conductivity value changed from 1800 μ s/cm - 2500 μ s/cm. Even within few drops CuSO₄.XH₂O change showed this much variation effect in EC and TDS value.

Fig. 3. (a₄, a₅, a₆) The pH value, TDS value and Electrical conductivity (EC) real time measured values during Cu₂ZnMgS₄ compound formation (Various CuSO₄.XH₂O concentrations).

3.4. Colorimeter studies on various sodium sulfide (Na₂S) concentrations

There are both visible monochromatic wavelengths and mixed band such as violet, violet blue, green, blue green, green blue, green, yellow and red wavelengths were used in present colorimeter study. Mixed band wavelength study on materials science and engineering is very rare due to instrumentations unavailability even in this advanced modern trend. So that we concentrate more on this mixed band wavelength investigation on our Cu₂ZnMgS₄ compound real time formation. This total study results outputs taken in real time. In this experiment CuSO₄.XH₂O (1-drop), ZnSO₄.XH₂O (1- drop), MgSO₄.XH₂O (1-drop) positive (+ ionic) elements concentrations were kept constant and only Na₂S negative (- ionic) elements concentrations varied from 1-drop to 5-drops.

Figure 4 shows the photo colorimeter results of our Cu₂ZnMgS₄ real time compound formation. From violet wavelength to green blue wavelengths we obtained increase in absorption and then for green blue to blue green we received decreased in absorption. Further blue green to green again absorption increased further green to red wavelengths real time Cu₂ZnMgS₄ compound absorption decreased. This rhythmic photo colorimeter absorption response showed very interesting symmetric trend for all of Na₂S concentrations.

*Fig. 4. Photo colorimeter results of our Cu*₂*ZnMgS*₄*real time compound formation. Here violet, violet blue (V Blue), green blue (G Blue), blue green (B Green), green, yellow and red wavelengths were used in present colorimeter result.*

3.5. Colorimeter studies on various magnesium sulphate (MgSO₄.XH₂O) concentrations

There are both visible monochromatic wavelengths and mixed band such as violet, violet blue, green, blue green, green blue, green, yellow and red wavelengths were used in present colorimeter study. Mixed band wavelength study on materials science and engineering is very rare due to instrumentations unavailability even in this advanced modern trend. So that we concentrate more on this mixed band wavelength investigation on our Cu₂ZnMgS₄ compound real time formation. This total study results outputs taken in real time. In this experiment CuSO₄.XH₂O (1- drop), ZnSO₄.XH₂O (1- drop), Na₂S negative (- ionic) elements concentrations 3-drops were kept constant and MgSO₄.XH₂O positive (+ ionic) elements concentrations only varied from 1-drop to 10-drops.

Figure 5 shows the photo colorimeter results of our Cu_2ZnMgS_4 real time compound formation. From violet wavelength to green blue wavelengths we obtained increase in absorption and then for green blue to blue green we received decreased in absorption. Further blue green to green again absorption increased further green to red wavelengths real time Cu_2ZnMgS_4 compound absorption decreased.

This rhythmic photo colorimeter absorption response showed very interesting symmetric trend for all of MgSO₄.XH₂O concentrations. But only one concentration completely showed different absorption trend (ie) MgSO₄.XH₂O 5-drops concentration showed drastically reduced absorption at violet blue mixed band region and then followed the similar absorption trend of all other wavelengths. Many times we repeated this experiment but similar results we observed.

Fig. 5.Shows the photo colorimeter results of our Cu_2ZnMgS_4 real time compound formation with various $MgSO_4.XH_2O$ concentrations.

3.6. Colorimeter studies on various copper sulphate (CuSO₄.XH₂O) concentrations

There are both visible monochromatic wavelengths and mixed band such as violet, violet blue, green, blue green, green blue, green, yellow and red wavelengths were used in present colorimeter study. Mixed band wavelength study on materials science and engineering is very rare due to instrumentations unavailability even in this advanced modern trend. So that we concentrate more on this mixed band wavelength investigation on our Cu₂ZnMgS₄ compound real time formation.

This total study results outputs taken in real time. In this experiment ZnSO₄.XH₂O(1drop), MgSO₄.XH₂O (10-drops) positive (+ ionic) elements concentrations, Na₂S negative (- ionic) elements concentrations 3-drops were kept constant and only CuSO₄.XH₂O varied from 1-drop to 5-drops. Figure 6 shows the photo colorimeter results of our Cu₂ZnMgS₄ real time compound formation. Maximum absorption we received at CuSO₄.XH₂O 1-drop and 2-drops than other concentrations. From violet wavelength to green blue wavelengths we obtained increase in absorption and then for green blue to blue green we received decreased in absorption. Further blue green to green again absorption increased further green to red wavelengths real time Cu₂ZnMgS₄ compound absorption decreased. This similar photo colorimeter absorption response showed very interesting trend for all of CuSO₄.XH₂O concentrations.

Fig. 6.Shows the photo colorimeter results of our Cu_2ZnMgS_4 real time compound formation with various $CuSO_4.XH_2O$ concentrations.

3.7. UV-Vis spectrophotometer studies on various sodium sulfide (Na₂S) concentrations

UV-Vis spectrophotometer studies on Cu_2ZnMgS_4 real time compound formation were investigated in the wavelength range of 300 nm – 950 nm. In this experiment CuSO₄.XH₂O 1drop, ZnSO₄.XH₂O (1-drop), MgSO₄.XH₂O (1-drops) positive (+ ionic) elements concentrations were kept constant and Na₂S negative (- ionic) elements concentrations only varied from 1-drop to 5-drops. Figure 7 shows the UV-Vis spectrophotometer results of our Cu₂ZnMgS₄ real time compound formation. Maximum transmittance % we received at Na₂S 1-drop and transmittance % started to decrease gradually for all other Na₂S high concentrations. Transmittance variation within few drops variation of Na₂S is a very important characteristic result that we have obtained. Similarly for opto-electronic materials and its related products fabrication this transmittance % tuning is a very important criterion to receive high efficient tunable performance.

Fig. 7.The UV-Vis spectrophotometer results of our Cu_2ZnMgS_4 real time compound formation in the wavelength range of 300 nm – 950 nm.

3.8. The UV-Vis spectrophotometer studies on various magnesium sulphate (MgSO₄.XH₂O) concentrations

UV-Vis spectrophotometer studies on Cu₂ZnMgS₄ real time compound formation were investigated in the wavelength range of 300 nm – 950 nm. In this experiment CuSO₄.XH₂O 1drop, ZnSO₄.XH₂O (1-drop), Na₂S negative (- ionic) elements concentrations 3-drops were kept constant and MgSO₄.XH₂O positive (+ ionic) elements concentrations only varied from 1-drops to 10-drops. Figure 8 shows the UV-Vis spectrophotometer results of our Cu₂ZnMgS₄ real time compound formation with various MgSO₄.XH₂O concentrations. Maximum transmittance % we received at MgSO₄.XH₂O 4-drops and transmittance % started to decrease gradually. From MgSO₄.XH₂O 1-drop to 4-drops transmittance % increased and from 5-drops onwards transmittance % started to decrease and finally reached lower transmittance % value of around 50% for MgSO₄.XH₂O 10-drops concentrations. This property is slightly different from usual elemental concentration variation and its corresponding UV-Vis transmittance property.

Fig. 8. The UV-Vis spectrophotometer results of Cu₂ZnMgS₄ real time compound formation with various MgSO₄.XH₂O concentrations varied from 1-drops to 10-drops.

3.9. UV-Vis spectrophotometer studies on various copper sulphate (CuSO₄.XH₂O) concentrations

UV-Vis spectrophotometer studies on Cu_2ZnMgS_4 real time compound formation were investigated in the wavelength range of 300 nm – 950 nm. In this experiment ZnSO₄.XH₂O (1drop), MgSO₄.XH₂O 10-drops positive (+ ionic) elements concentrations, Na₂S negative (- ionic) elements concentrations 3-drops were kept constant and CuSO₄.XH₂O 1-drop, only varied from 1drops to 5-drops. Figure 9 shows the UV-Vis spectrophotometer results of our Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations. Maximum transmittance % we received at CuSO₄.XH₂O 3-drops and all other concentrations showed similar transmittance % within ±5% variation.

Fig. 9. The UV-Vis spectrophotometer results of Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations varied from 1-drops to 5-drops.

3.10. Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various Na₂S concentrations

Figure 10 (a) shows the digital photo-flourometer studies on Cu_2ZnMgS_4 real time compound formation with various Na₂S concentrations. Here we used the primary excitation filter 5113 and three secondary filters 3385, 3486 and 4308. The observed fluorescence emission results with respect to Na₂S negative (- ionic) elements concentrations from 1-drops to 4-drops were recorded and presented. Na₂S 1-drop showed lower emission intensity and Na₂S 4-drops showed high fluorescence.

Fig. 10. (a) Digital photo-flourometer studies on Cu_2ZnMgS_4 real time compound formation with various Na_2S concentrations varied from 1-drop to 4-drops. Primary excitations filter 5113.

Fig. 10. (b) Digital photo-flourometer studies on Cu_2ZnMgS_4 real time compound formation with various Na_2S concentrations varied from 1-drop to 4-drops. Primary excitations filter 5840.

Figure 10 (b) showed the digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various Na₂S concentrations varied from 1-drop to 4-drops. Primary excitations filter 5840. The observed fluorescence emission results with respect to Na₂S negative (-ionic) elements concentrations from 1-drops to 4-drops were recorded. Na₂S 2-drop and 3-drops showed relatively high emission intensity and Na₂S 1-drops and 4-drops showed lower fluorescence for this specific 5840 filter.

4. Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various MgSO₄.XH₂O concentrations.

Figure 11 (a) shows the digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various MgSO₄.XH₂O concentrations. Here we used the primary

excitation filter 5113 and three secondary filters such as 3385, 3486 and 4308 respectively. The observed fluorescence emission results with respect to MgSO₄.XH₂O positive (+ ionic) elements concentrations from 1-drops to 10-drops were recorded and showed in the following graph. MgSO₄.XH₂O 1-drop, 5-drops and 9-drops showed relatively lower emission intensity and all other concentrations showed high fluorescence emission intensity.

Fig. 11. (a) Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various MgSO₄.XH₂O concentrations varied from 1-drop to 10-drops.

Figure 11 (b) showed the digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various Na₂S concentrations varied from 1-drop to 4-drops. Primary excitations filter 5840 and the secondary filters are 3385, 3486 and 4308. The observed fluorescence emission results showed the 3385 and 3486 filters showed high emission intensity for all of concentrations. Lower emission intensity 130 a.u. and 183 a.u. highest emission intensity recorded from filter 3486. Filter 4308 showed lowest emission intensity values for all MgSO₄.XH₂O concentrations. So one can easily understand from this detailed emission result the excitation primary and secondary filter sources also played the very important role in materials fluorescence emission property investigation.

Fig. 11. (b) Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various MgSO₄.XH₂O concentrations varied from 1-drop to 10-drops.

4.1. Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations

Figure 12 (a) shows the digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations. Here the primary excitation filter 5840 and three secondary filters such as 3385, 3486 and 4308 were used respectively. The observed emission results with respect to CuSO₄.XH₂O positive (+ ionic) elements concentrations from 1-drops to 5-drops were recorded and exhibited in the following graph. CuSO₄.XH₂O 5-drop showed relatively lower emission intensity and all other concentrations showed high fluorescence emission intensity. Among these CuSO₄.XH₂O 2-drops using filter 3486 showed maximum emission intensity than all others. Especially secondary filter 4308 showed almost no emission for all of MgSO₄.XH₂O concentrations.

Fig. 12. (a) Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations using secondary filters 3385, 3486 and 4308 and primary excitation filter 5840.

Figure 12 (b) shows the digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations. Here the primary excitation filter 5113 and three secondary filters such as 3385, 3486 and 4308 were used. The observed emission results with respect to CuSO₄.XH₂O positive (+ ionic) elements concentrations from 1-drops to 5-drops were recorded and presented in the following graph. CuSO₄.XH₂O 2-drops and 4-drop showed relatively lower emission intensity. All other concentrations showed relatively lower fluorescence emission intensity. Among these CuSO₄.XH₂O 4-drops using filter 4308 showed maximum emission intensity than all other emission intensity.

Fig. 12. (b) Digital photo-flourometer studies on Cu₂ZnMgS₄ real time compound formation with various CuSO₄.XH₂O concentrations using secondary filters 3385, 3486 and 4308 and primary excitation filter 5113.

5. Conclusions

In the first step the Cu₂ZnMgS₄ quaternary compound synthesized with various Na₂S concentrations and its real time measurement investigated successfully.

The real time investigated pH and TDS measurement showed both the pH and TDS value gradually increased with respect to Na₂S concentrations increment. Electrical measurement drastically varied and for Na₂S concentration 1 drop showed 860 µs/cm and for Na₂S concentration 4 drops showed nearly 960 µs/cm. Even few drops Na₂S concentration variation showed the tremendous change in its chemical and electrical properties. In the second stage Cu₂ZnMgS₄ quaternary compound synthesized with various MgSO₄.XH₂O concentrations. The real time measured pH value gradually decreased when MgSO₄.XH₂O concentrations drop wise increased systematically. But TDS value and electrical conductivity value increased much with respect to MgSO₄.XH₂O concentrations increment. In the third stage the Cu₂ZnMgS₄ quaternary compound synthesized with various.

The real time pH measurement showed different characteristics than other said compositions. When CuSO₄.XH₂O concentrations increased drop wide then the pH value first decreased and then increased considerably. Further TDS value and electrical conductivity value increased much with respect to CuSO₄.XH₂O concentrations increment. In these photo colorimeter measurements especially we measured the mixed band wavelength responses for all samples. The photocolorimeter results showed the increase in absorbance noticed at all of lower elemental (Na₂S, MgSO₄.XH₂O, CuSO₄.XH₂O) concentrations. For higher concentrations the corresponding photocolorimeter absorbance reduced much. UV-Vis transmittance real time results in the wavelength range of 300 nm to 950 nm showed the systematic decrease in %Transmittance for increase in Na₂S and CuSO₄.XH₂O concentrations.

In case of MgSO₄.XH₂O concentration increment (from 1 drop to 4 drops) we observed the increase in %Transmittance and further increase in concentrations showed reasonably degreased %Transmittance. Photofluorometer real time results (using primary filter 5113) showed the increase in fluorescence when increase the Na₂S, CuSO₄.XH₂O and MgSO₄.XH₂O concentrations. Fluorometer real time results (using primary filter 5840) showed the decrease in fluorescence when increase the Na₂S, CuSO₄.XH₂O concentrations. So the primary filter played a very important role in fluorescence property measurement of materials.

Acknowledgements

Our sincere thanks to "The CM J. Jayalalitha Research Institute for Space and Defense", (MSME: TN06D0010191), Free Research Service to Common Peoples, Government of India and "Research Product Invention & Solution Service Center (MSME-TN21D0003788)" for providing their knowledge support and instrumentation support throughout this novel research work completion.

References

[1] Noor ul Ain, Jamal Abdul Nasir, Zaibunisa Khan, Ian S. Butlerb, Ziaur Rehman, RSC Adv.,
 12, 7550 (2022); <u>https://doi.org/10.1039/D1RA08414C</u>

[2] J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer, 17, 20 (2017); https://doi.org/10.1038/nrc.2016.108

[3] X. Zheng, L. Wang, S. Liu, W. Zhang, F. Liu, Z. Xie, Adv. Funct. Mater., 28, 1706507 (2018); <u>https://doi.org/10.1002/adfm.201706507</u>

[4] A. S. Thakor and S. S. Gambhir, Ca-Cancer J. Clin., 63, 395 (2013); https://doi.org/10.3322/caac.21199

[5] K. B. A. Ahmed and V. Anbazhagan, RSC Adv., 7, 36644 (2017); https://doi.org/10.1039/C7RA05636B

[6] T. S. Bhat, P. S. Patil, R. B. Rakhi, Recent trends in electrolytes for supercapacitors. J. Energy Storage, 50, 104222 (2022); <u>https://doi.org/10.1016/j.est.2022.104222</u>

[7] X. J. Cao, H. Y. Zeng, X. Cao, S. Xu, G. B. F. C. Alain, K. M. Zou, L. Liu, Appl. Clay Sci. 199, 105864 (2020); <u>https://doi.org/10.1016/j.clay.2020.105864</u>

[8] M. Li, S. Yang, M. Wang, Trans. Nonferrous Met. Soc. China, 27, 2283 (2017); https://doi.org/10.1016/S1003-6326(17)60068-2

[9] Yanhong Ding, Rongpeng Lin, Shuicheng Xiong, Yirong Zhu, Meng Yu, Xiaobo Duan, Molecules, 28, 2487 (2023); <u>https://doi.org/10.3390/molecules28062487</u>

[10] Sifeng Zhang, Wenxiang Meng, Lulu Wang, Lingxin Li, Yanju Long, Yunrui Hei, Luting Zhou, Shenglan Wu, Ziguang Zheng, Lijun Luo, Fengzhi Jiang, Nanoscale Research Letters 15:48, (2020); <u>https://doi.org/10.1186/s11671-020-3274-6</u>

[11] A. Peter, L. Ajibade, Nandipha and Botha, Nanomaterials, 7, 32 (2017); https://doi.org/10.3390/nano7020032

[12] M. Antoniadou, V. M. Daskalaki, N. Balis, D. I. Kondarides, C. Kordulis, P. Lianos, Appl. Catal. 107, 188 (2011); <u>https://doi.org/10.1016/j.apcatb.2011.07.013</u>

[13] C. H. Lai, M. Y. Lu, L. J. J. Chen, Mater. Chem. 22, 19 (2012); https://doi.org/10.1039/c2jm30455d

[14] L. Kosyachenko, T. Toyana, Sol. Energy Mater. Sol. Cells 120, 512 (2014); https://doi.org/10.1016/j.solmat.2013.09.032

[15] Z. H. W, D. Y. Geng, Y. J. Zhang, Z. D. Zhang, Mater. Chem. Phys. 222, 241 (2010).

[16] D. J. Milliron, S. M. Hughes, Y. Cui , L. Manna, J. B. Li , L.W. Wand A. P. Alivisatos, J. Nat. 430, 190 (2004); <u>https://doi.org/10.1038/nature02695</u>

[17] J. Z. Xu, S. Xu, J. Geng, G. X. Li , J. J. Zhu, Ultrason. Sonochem. 13, 451 (2006); https://doi.org/10.1016/j.ultsonch.2005.09.003

[18] Y. L. Kong, I. A. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T. W. Koh, H. A. Chin, D. A. Steingart, B. P. Rand, M. C. McAlpine, Nano Lett. 14, 7017 (2014); <u>https://doi.org/10.1021/nl5033292</u>

[19] J. Alberto, J. N. Cllifford, E. Palomares, Coord. Chem. Rev. 263-264, 53 (2014);

808

https://doi.org/10.1016/j.ccr.2013.07.005

[20] M. R. Gao, Y. F. Xu, J. Jiang, S. H. Yu, Chem. Soc. Rev. 42, 2986 (2013); https://doi.org/10.1039/c2cs35310e

[21] P. Couvreur, Adv. Drug Deliv. Rev. 65, 21 (2013); https://doi.org/10.1016/j.addr.2012.04.010

[22] J. L. Arias, L. H. Reddy, M. Othman, B. Gillet, D. Desmaele, F. Zouhiri, F. Dosio, R. Gref, P. Couvreur, ACS Nano, 22, 1513 (2011); <u>https://doi.org/10.1021/nn1034197</u>

[23] A. P. Alivisatos, Science 271, 933 (1996); https://doi.org/10.1126/science.271.5251.933

[24] C. Wadia, A. P. Alivisatos, D. M. Kammen, Environ. Sci. Technol. 15-43, 2072 (2009); https://doi.org/10.1021/es8019534

[25] Y. L. Xie, Electrochim. Acta, 105, 137 (2013); <u>https://doi.org/10.1016/j.electacta.2013.04.157</u>
[26] T. Safrani, J. Jopp, Y. Golan, RSC Adv. 3, 23066 (2013); https://doi.org/10.1039/c3ra42528b

[27] S. K. Nath, P. K. Kalita, Nanosci. Nanotechnol. Inter. J, 2, 8 (2012); https://doi.org/10.5923/j.nn.20120201.02

[28] V. M. João, Limaa, A. Rafael, Silvaa, B. O. Stevan, Santosa, F. O. Carlos Graeffa, V. A. Luis. Scalvi, Materials Research. 24(suppl. 1) (2021).

[29] O. O. Balayeva, A. A. Azizov, M. B. Muradov, G. M. Eyvazova, R. M. Alosmanov, Journal of Ovonic Research, 13 (1), 25 (2017).

[30] Joseph Onyeka Emegha, Kingsley Eghonghon Ukhurebor, Uyiosa Osagie Aigbe, John Damisa, Adeoye Victor Babalola, Heliyon, 8, e10331 (2022); https://doi.org/10.1016/j.heliyon.2022.e10331

[31] Derejaw Gardew Dubale, Tizazu Abza Abshiro, Fekadu Gashaw Hone, Int. J. Thin. Fil. Sci. Tec. 10 (1), 21 (2021).

[32] A. Chiril, P. Reinhard, F. Pianezzi, P. Bloesch, A. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A. Tiwari, Nat. Mater. 12, 1107 (2013); <u>https://doi.org/10.1038/nmat3789</u>

[33] A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, A. Tiwari, Nat. Mater. 10, 857 (2013); <u>https://doi.org/10.1038/nmat3122</u>

[34] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics 19, 894 (2021);

https://doi.org/10.1002/pip.1078

[35] A. Rockett, Curr. Opin. Solid State Mater. Sci.14, 143 (2010); https://doi.org/10.1016/j.cossms.2010.08.001

[36] I. Repins, M. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, Prog. Photovoltaics 16, 235 (2008; <u>https://doi.org/10.1002/pip.822</u>

[37] K. Matunaga, T. Komaru, Y. Nakayama, T. Kume, Y. Suzuki, Sol. Energy Mater. Sol. Cells 93, 1134 (2009); <u>https://doi.org/10.1016/j.solmat.2009.02.015</u>

[38] K. Kushiya, Sol. Energy Mater. Sol. Cells 93, 1037 (2009); https://doi.org/10.1016/j.solmat.2008.11.063

[39] Q. Cao, O. Gunawan, M. Copel, K. Reuter, S. Jay Che, V. Deline, D. Mitzi, Adv. Energy Mater. 1, 845 (2013); <u>https://doi.org/10.1002/aenm.201100344</u>

[40] W. Witte, D. Abou-Ras, K. Albe, G. Bauer, F.Bertram, C. Boit, R. Brüggemann, J. Christen, J. Dietrich, A. Eicke, D. Hariskos, M. Maiberg R. Mainz, M. Meessen, M. Müller, O. Neumann, T. Orgis, S. Paetel, J. Pohl, H. Rodriguez-Alvarez, R. Scheer, H. Schock, T. Unold, A. Weber, M.

Powalla, Prog. Photovoltaics; <u>https://doi.org/10.1002/pip.2485</u>

[41] M. S. Revathy, R. Suman, V. Muthu Priyal, T. Chitravel, T. Prem Kumar, Journal of Ovonic Research, 12 (1), 23 (2016).