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In the present work, quantitative structure activity relationship studies were performed to 
explore the structural and physicochemical requirements of phenyl ethyl thiourea (PET) 
derivatives for anti-HIV activity. QSAR models have been developed using steric, 
electronic and thermodynamic descriptors. Statistical techniques like multiple linear 
regression with factor analysis as the data preprocessing step (FA-MLR), principal 
component regression analysis (PCRA), and partial least squares with factor analysis as 
the data preprocessing step (FA-PLS) analysis were applied to identify the structural and 
physicochemical requirements for anti-HIV activity. The generated equations were 
statistically validated using leave-one-out technique and the best models were also 
subjected to leave-25% out cross-validation. The quality of fit and predictive ability of 
equations obtained from FA-MLR, PCRA, and FA-PLS is of acceptable statistical range 
(explained variance ranging from 80.7% to 94.0%, while predicted variance ranging from 
75.9% to 93.4%). The robustness of the best models was checked by Y–randomization test 
and identified as good predictive models. The coefficient of density and van der Waal's 
energy shows that the activity increases with increase in density and van der Waals energy 
of molecules. The coefficient of molar refractivity shows that the activity decreases with 
increase in volume and critical pressure of the molecules is detrimental to activity. The 
information generated from the present study may be useful in the design of more potent 
PET derivatives as anti HIV agents. 
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1. Introduction 
 
HIV- 1 (Human Immunodeficiency Virus Type-1) is the pathogenic retrovirus and 

causative agent of AIDS or AIDS- related complex (ARC) [1,2]. When viral RNA is translated 
into a polypeptide sequence, it is assembled in a long polypeptide chain, which includes several 
individual proteins namely, reverse transcriptase, protease, integrase, etc. Before these enzymes 
become functional, they must be cut from the longer polypeptide chain. 

Acquired immune deficiency syndrome (AIDS) is a formidable pandemic that is still 
wreaking havoc world wide. The catastrophic potential of this virally caused disease may not have 
been fully realized. The causative moiety of the disease is human immunodeficiency virus (HIV), 
which is a retrovirus of the lentivirus family [3]. The three viral enzymes; reverse transcriptase, 
protease and integrase encoded by the gag and gag-pol genes of HIV play an important role in the 
virus replication cycle. Among them, viral protease catalyzes the formation of viral functional 
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enzymes and proteins necessary for its survival. The viral particles at this stage are called virions. 
The virus particles after the protease action have all the necessary constituents of mature virus and 
are capable of invading other T4 cells and repeating the life cycle of proviral DNA from viral 
RNA, the key stage in viral replication. Its central role in virus maturation makes protease is a 
prime target for anti-HIV-therapy [4]. 

QSAR analyses of HIV-1 reverse transcriptase inhibitors [5], HIV-1 protease inhibitors 
[6,7] and HIV-1 integrase inhibitors [8] and gp 120 envelope glycoprotein [9] were reported. The 
present group of authors has developed a few quantitative structure-activity relationship models to 
predict anti-HIV activity of different group of compounds [10-22]. In continuation of such efforts, 
in this article, we have performed QSAR analysis for anti-HIV activity of PET derivatives 
[23,24]using modeling software WIN CAChe 6.1 and statistical software STATISTICA 6.  

The purpose of the present study is to investigate the physico-chemical parameters 
responsible for the anti-HIV activity of PET derivatives, to explore the correlation between them 
and is expected to get more information for designing novel PET derivatives with potent anti-HIV 
activity.  

There is high structural diversity and a sufficient range of the biological activity in the 
selected series of PET derivatives. So we have selected this series of compounds for our QSAR 
studies. We carried out QSAR analysis using different statistical techniques and established QSAR 
models to guide further structural optimization and predict the biological potency of clinical drug 
candidates.   

 
2. Experimental 
 
Materials and Methods 
 
All of the Molecular Modeling studies, reported herein were performed using Win 

CAChe 6.1 (Product of Fujitsu private limited, Japan, http://www.cachesoftware.com 
/contacts/japan.shtml) modeling software, Molecular modeling pro 6.1.0, trial version (ChemSW, 
Inc., www.chemsw.com) and the QSAR models were executed with STATISTICA 6 (Softstat, 
Inc., Tulsa, USA) software. 

 
Biological data 
 
In the present work we have taken 71 PET compounds and their anti-HIV activity from the 

reported work [23,24]. Many of these compounds inhibited wild type HIV-1 with ED50 values 
between 0.001 μM and 0.005 μM in MT-4 cells. One of these thiourea derivatives troviridine 
showed good anti-HIV activity (0.02 μM, in clinical trial) with low cytotoxicity for MT4 cells 
(Cantrell et al., 1996). There is high structural diversity and a sufficient range of the biological 
activity in the selected series of PET derivatives. It insists as to select these series of compounds 
for our QSAR studies. All the anti-HIV activities used in the present study were expressed as 
pED50 = -log10 ED50. Where ED50 is the micro molar concentration of the compounds producing 
50% reduction in the cytopathic effect caused by the virus is stated as the means of at least two 
experiments. ED50 values were assessed by XTT assays [25]. The compounds which did not show 
confirmed anti-HIV activity in the above cited literature have not been taken for our study. 

 
Optimization of molecules structure  
From the structures of 71 PET analogues, sixty compounds constituted as a training set 

and eleven compounds were used in the test set. All 71 PET compounds were built on workspace 
of Win CAChe 6.1 (molecular modeling software, a product of Fujitsu private limited, Japan) and 
energy minimization of the molecules was done using Allinger’s MM2 force field followed by 
semi empirical PM3 method available in MOPAC module with RMS gradient 0.001Å. The stable 
conformations of the molecules were selected automatically by the software when the 
molecules subjected for optimization. Most stable structure for each compound was generated 
and used for calculating various physico-chemical descriptors like thermodynamic, steric and 
electronic values of descriptors. Some of the descriptors were calculated using the above 

http://www.cachesoftware.com/
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optimized structure of the compounds by modeling software Molecular modeling pro 6.1.0, trial 
version (ChemSW, Inc., www.chemsw.com). 

Table 1. Structures of PET analogs and their anti-HIV activity in MT-4 cell lines 

N
H

N
H

S

R1
N

S

N
H

N
H

R1

S

12
3 4

5
1

2

3
4

5
6

  Compound 1- 25                            Compound 26-38 

    
N
H

N
H

R2

S

R1

 
       Compound 39-46  

pED50    (μM) Comp 
         

No 
R1 R2 

Experimentalb 
1 
2 
3a 
4 
5a 
6 
7 
8 
9 

10 
11 
12 
13 
14a 
15 
16 
17 
18 
19 
20a 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30a 
31 
32 
33 
34 
35 

Phenyl 
2-fluorophenyl 
3-fluorophenyl 
4-fluorophenyl 

2-methoxyphenyl 
3-methoxyphenyl 
4-methoxyphenyl 
2-methylphenyl 
2-nitrophenyl 

2-hydroxyphenyl 
2-chlorophenyl 
3-ethoxyphenyl 

3-propoxyphenyl 
3-isopropoxyphenyl 

3-phenoxyphenyl 
2,6-dimethoxyphenyl 
2,5-dimethoxyphenyl 

3-bromo-6-methoxyphenyl 
2-fluoro-6-methoxyphenyl 
2-ethoxy-6-fluorophenyl 

2,6-difluorophenyl 
2-chloro-6-fluorophenyl 

2-pyridyl 
3-pyridyl 
2-furyl 

4-methylthiazol-2-yl 
4-ethylthiazol-2-yl 

4-propylthiazol-2-yl 
4-isopropylthiazol-2-yl 

4-butylthiazol-2-yl 
4-cyanothiazol-2-yl 

4-(trifluoro methyl)thiazol-2-yl 
4-(ethoxy carbonyl)thiazol-2-yl 

5-chlorothiazol-2-yl 
1,3,4-thiazol-2-yl 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

-0.1139 
1 

0.6021 
-0.5185 
0.3979 
0.2218 
-0.7404 
0.0227 
-0.0414 
-0.602 
0.3979 
0.8239 
-0.3424 
0.3979 
-0.4471 
1.0457 
0.3979 
1.301 

0.5229 
0.6989 
1.6989 
1.301 

-0.1139 
-0.8062 
-0.716 
0.3979 
0.1549 
-0.2041 
-0.1139 
-0.1139 
0.6989 
0.301 
0.301 

-0.4314 
-0.7243 
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36 
37 
38 
39a 
40 
41 
42a 
43 
44 
45 
46 

2-pyridyl 
5-bromo-2-pyridyl 
5-methyl-2-pyridyl 
2,6-difluorophenyl 
2,6-difluorophenyl 
2,6-difluorophenyl 

2-ethoxy-6-fluorophenyl 
2-ethoxy-6-fluorophenyl 

2-pyridyl 
2-pyridyl 

2,6-difluorophenyl 

- 
- 
- 

4-cyano thiazoly-2-yl 
5-bromo-2-pyridyl 
5-methyl-2-pyridyl 
5-methyl-2-pyridyl 
5-bromo-2-pyridyl 
5-methyl-2-pyridyl 
5-bromo-2-pyridyl 
4-ethylthiazol-2-yl 

0.6989 
1.301 

0.8239 
1.5229 

2 
2 

0.6989 
1.6989 
0.5228 
1.6989 
1.0969 

a - test set compounds 
b - the experimental ED50 values (in micro molar) were converted into –logED50 (pED50, in micro 
molar).  
 
 

Descriptors calculation  
The physicochemical properties were calculated on project leader file of the modeling 

software Win CAChe 6.1. In present study the calculated descriptors were conformational 
minimum energies (CME), Zero-order connectivity index (CI0), First-order connectivity index 
(CI1), Second-order connectivity index (CI2), dipole moment (DM), total energy at its current 
geometry after optimization of structure (TE), heat of formation at its current geometry after 
optimization of structure (HF), dipole vector X (DVX), dipole vector Y (DVY), dipole vector Z 
(DVZ), Highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital 
(LUMO), octanol-water partition coefficient (logP), squared partition coefficient (logP2), molar 
refractivity (MR), shape index order 1 (SI1), shape index order 2 (SI2), Zero-order valance 
connectivity index (VI0), First-order valance connectivity index (VI1), Second-order valance 
connectivity index (VI2) and solvent accessible surface area (SAS). We have not included 
ionization potential (IP) and electron affinity for developing QSAR models because these are 
highly inter-correlated with HOMO and LUMO, respectively. 

 
Table 2. Structures of PET analogs and their anti-HIV activity in MT-4 cell lines 

N
H

N
H

Ar

S

R3

R2

R4

R6

N
H

N
H

Ar

S

N
CH3

1

23

4

5

1

23
4

5 6

 Compound 47-69      Compound 70 & 71 
 

pED50    (μM) 
 Comp 

No R2 R3 R4 R6 Ar 
Experimentalb 

47 
48 
49 
50 
51a 
52 
53a 

F 
F 
F 
F 
F 
F 
F 

(CO)N(Me)2 
CH2NAc 

CN 
N(Me)2 
N(Me)2 
OCH3 
OC2H5 

H 
H 
H 
H 
H 
H 
H 

F 
F 
F 
F 
F 
F 
F 

5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-chloro-2-pyridyl 
5-chloro-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 

1.0969 
0.0457 
2.2218 
1.3979 
1.3979 
1.8239 
2.2218 
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54 
55 
56 
57 
58 
59 
60 
61 
62 
63a 
64 
65 
66 
67 
68 
69 
70 
71a 

F 
Cl 
Cl 
Cl 
Cl 
H 
H 
F 
F 
F 
F 
F 

OCH3 
F 
F 
Cl 
- 
- 

CH2OCH3 
OC2H5 
OC2H5 
OC2H5 
OC2H5 
OCH3 
OC2H5 

H 
F 
F 

OCH3 
OC2H5 
OCH3 

H 
CN 

OC2H5 
- 
- 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

N(Me)2 
N(Me)2 

Cl 
- 
- 

F 
F 
F 
F 
F 

OCH3 
OC2H5 
OC2H5 
OC2H5 
OCH3 
OCH3 
OCH3 

F 
F 
H 
F 
- 
- 

5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-chloro-2-pyridyl 
5-iodo-2-pyridyl 

5-cyano-2-pyridyl 
5-chloro-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-chloro-2-pyridyl 
5-chloro-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-bromo-2-pyridyl 
5-cyano-2-pyridyl 
5-chloro-2-pyridyl 

2.2218 
2.1549 
2.0969 
1.8239 
2.5229 
1.3979 
1.7447 
1.886 

2.1549 
2.1589 
2.6989 
2.301 

1.9208 
1.7447 
1.886 
1.886 
0.959 
0.602 

a - test set compounds 
b - the experimental ED50 values (in micro molar) were converted into –logED50 (pED50, in micro 
molar).  
 

QSAR models development and validation 
In present study, we have used 50 physicochemical descriptors calculated by Win CAChe 

6.1 and Molecular modeling pro 6.1.0 (the complete descriptors data set of all compounds will be 
provided on request). All the calculated descriptors were considered as independent variable and 
biological activity as dependent variable. STATISTICA 6 (StatSoft, Inc., Tulsa, USA) software 
was used to generate QSAR models by different statistical techniques.  

In the present study, we used three statistical methods to develop the models: (1) multiple 
linear regression with factor analysis as the data pre-processing step for variable selection (FA-
MLR), (2) principal component regression analysis (PCRA), and (3) partial least squares with 
factor analysis (FA-PLS).  

In case of FA-MLR, factor analysis (FA) was used as the data-preprocessing step to 
identify the important predictor variables contributing to the response variable and to avoid 
collinearities among them even though classical approach of multiple linear regression technique 
was used as the final statistical tool for developing QSAR relations. In a typical factor analysis 
procedure, the data matrix is first standardized, correlation matrix and subsequently reduced 
correlation matrix are constructed, eigenvalue problem is then solved and the factor pattern can be 
obtained from the corresponding eigenvectors. The principal objectives of factor analysis are to 
display multidimensional data in a space of lower dimensionality with minimum loss of 
information (explaining >95% of the variance of the data matrix) and to extract the basic features 
behind the data with ultimate goal of interpretation and/or prediction. Factor analysis was 
performed on the dataset(s) containing biological activity and all descriptor variables, which were 
to be considered.  The factors were extracted by principal component method and then 
rotated by VARIMAX rotation to obtain Thurston’s simple structure. The simple structure is 
characterized by the property that as many variables as possible fall on the coordinate axes when 
presented in common factor space, so that largest possible number of factor loadings becomes 
zero. This is done to obtain a numerically comprehensive picture of the relatedness of the 
variables. Only variables with non-zero loadings in such factors where biological activity also has 
non-zero loading were considered important in explaining variance of the activity. Further, 
variables with non-zero loadings in different factors were combined in a multivariate equation.  

In case of PCRA, factor scores (as obtained from FA) are used as the predictor variables. 
PCRA has an advantage that collinearities among X variables are not a disturbing factor and that 
the number of variables included in the analysis may exceed the number of observations. In 
PCRA, all descriptors are assumed to be important while the aim of factor analysis is to identify 
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relevant descriptors. PLS is a generalization of regression, which can handle data with strongly 
correlated and/or noisy or numerous X variables. The linear PLS model finds ‘new variables’ 
(latent variables) which are linear combinations of the original variables. To avoid overfitting, a 
strict test for the significance of each consecutive PLS component is necessary and then stopping 
when the components are non-significant. Cross-validation is a practical and reliable method of 
testing this significance. PLS is normally used in combination with cross-validation to obtain the 
optimum number of components. This ensures that the QSAR equations are selected based on their 
ability to predict the data rather than to fit the data. In case of PLS analysis on the present dataset, 
factor loading table obtained from factor analysis was used for primary variable screening. From 
the factor loading table, variables with high loading (>0.7) in such factors where the activity shows 
high or moderate loading were selected for the PLS regression.  

Statistical measures used were n-number of compounds in regression, r-correlation 
coefficient, r2-squared correlation coefficient, F- test (Fischer’s value) for statistical significance, 
SD- standard deviation, q2- cross validated correlation coefficient and correlation matrix to show 
correlation among the parameters. The squared correlation coefficient (or coefficient of multiple 
determination) r2 is a relative measure of fit by the regression equation. Correspondingly, it 
represents the part of the variation in the observed data that is explained by the regression. The 
correlation coefficient values closer to 1.0 represent the better fit of the regression. The F-test 
reflects the ratio of the variance explained by the model and the variance due to the error in the 
regression. High values of the F-test indicate that the model is statistically significant. Standard 
deviation is measured by the error mean square, which expresses the variation of the residuals or 
the variation about the regression line. Thus standard deviation is an absolute measure of quality of 
fit and should have a low value for the regression to be significant. 
q2 = 1 –    PRESS 
                                                                                                                          N 

             ∑ (yi - ym)2  
       i=1  

                                                                   N 

                                                            PRESS =  ∑ (ypred,i – yi)2  
                                                                                                                        i=1 

Where yi is the activity for training set compounds, ym is the mean observed value, corresponding 
to the mean of the values for each cross-validation group, and ypred,i is the predicted activity for yi. 
The predictive ability of the selected model was also confirmed by external R2 and R2CVext [24]. 

                       
R2CVext = 1 -

∑ 
test
i=1

∑ 
test
i=1

(yexp - ypred)2

(yexp - ytr)2

Where        is the averaged value for the dependent variable for the training set.ytr  
 Furthermore Tropsha et al. considered a QSAR model predictive, if the following 
conditions are satisfied: 
                                                       r2

CVext > 0.5, r2 > 0.6,  
r2 - r2

o / r2 < 0.1, r2 - r’2
o / r2 < 0.1 and 0.85 ≤ k ≤1.15 or 0.85 ≤ k’ ≤ 1.15 

Mathematical definitions of r2
o, r’2

o, k and k’ are based on regression of the observed activities 
against predicted activities and the opposite (regression of the predicted activities against observed 
activities). The definitions are given clearly by Tropsha et al., and are not discussed here. 
The robustness of a QSAR model was checked by Y – randomization test. In this technique, new 
QSAR models were developed by shuffling the dependent variable vector randomly and keeping 
the original independent variable as such. The new QSAR models are expected to have low r2 and 
q2 values. If the opposite happens then an acceptable QSAR model can not be obtained for the 
specific modeling method and data.  
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3. Results and Discussion 

 

FA-MLR 
It was observed that 8 factors could explain the data matrix to the extent of 98.5%, from 

the factor analysis on the data matrix consisting of the anti-HIV activity data and physiochemical 
parameters. Table 4 shows that the biological activity is highly loaded with factors 3 (highly 
loaded in VDW), 2 (highly loaded in EF, HF and GF), and 1 (highly loaded in MR, CI3, VI1, VI2, 
CT and EV), moderately loaded with factors 6 (highly loaded in TE), 5 (highly loaded in logP), 4 
and 7 (highly loaded in HP and D respectively), and poorly loaded with factor 8 (considerably 
loaded in CP). Based on the factor analysis the following equation was derived with six variables. 

pED50 = 4.918 (± 1.536) – 0.177 (± 0.029) MR + 0.342 (± 0.134) logP – 0.117 (±  0.022) 
CP + 0.092 (± 0.024) EV + 2.89 (± 0.706) D + 0.233 (± 0.038) VDW      (1) 

n = 60, r = 0.898, r2 = 0.807, r2a = 0.785, SEE = 0.464, F (6, 53) = 36.86, P   <0.001, r2
CV 

= 0.748, SPRESS =0.530, PRESS = 14.9, SDEP = 0.502.   
Eq. (1) could explain 80.7% of the variance and predict 74.8% of the variance. The 

negative coefficient of MR and CP showed that, the volume and high critical pressure is 
detrimental to the activity, respectively. The biological activity increase when the logP and VDW 
energy of the molecule increase. We have included EV in this model even it’s highly inter-
correlated with other descriptors, because it’s not having multicolinearity problem (variance 
inflation factor (VIF) is less than ten). It’s indicate that the volume of the substitutent should be 
less mean while the lipophilicity of the substituent would be more for increasing the anti-HIV 
activity of PET derivatives. Leave 25% out crossvalidation also carried out for this model and the 
data is shown in Table 6. The predictive ability of the selected model was also confirmed by 
external r2

CVext method. According to  
Tropsha et al., the proposed QSAR model is predictive as it satisfies all the conditions like 

r2
CVext > 0.5, r2 > 0.6, r2 - r2

o / r2 < 0.1, r2 - r’2
o / r2 < 0.1 and 0.85 ≤ k ≤1.15 or 0.85 ≤ k’ ≤ 1.15 but 

this model satisfy the following criteria r2
CVext = 0.508 > 0.5, r2 =0.732 > 0.6, r2 – r’2

0/ r2 = 0.024 < 
0.1, k = 0.8864 < 1.15 but > 0.85 and k’ = 0.9867 < 1.15 but > 0.85, except the condition r2 - r2

0/ r2 
< 0.1.The value of r2 - r2

0/ r2 is 0.2143. So this QSAR model is not predictive as its not satisfy all 
the conditions reported by Tropsha et al [26]. 

pED50 = 5.099 (± 1.511) – 0.174 (± 0.028) MR + 0.278 (± 0.137) logP – 0.142(± 0.026) 
CP + 0.079 (± 0.025) EV + 0.004 (± 0.002) HF + 3.937 (± 0.917) D + 0.239 (± 0.038) VDW  
          (2) 

n = 60, r = 0.904, r2 = 0.817, r2a = 0.793, SEE = 0.455, F (7, 52) = 33.25, P <0.001, r2
CV = 

0.762, SPRESS =0.520, PRESS = 14.0, SDEP = 0.488.   
 
Eq. (2) with seven variables could explain 81.7% of the variance and predict 76.2% of the 

variance. There is significant improvement in statistical quality when one extra variable (HF), Eq. 
(2), is included additionally to the variables in Eq. (1). The positive contribution of the HF on the 
biological activity indicated that heat of formation is responsible for the anti-HIV activity of the 
PET compounds. The inter-correlation (r) matrix among the predictor variables is given in Table 5. 
The predictive ability of the selected model was also confirmed by external r2

CVext method. 
According to Tropsha et al., the proposed QSAR model is predictive as it satisfies all the 
conditions r2

CVext = 0.591 > 0.5, r2 =0.750 > 0.6, r2 - r2
0/ r2 = 0.0968 < 0.1, r2 – r’2

0/ r2 = 0.0172 < 
0.1, k = 0.8956 < 1.15 but > 0.85 and k’ = 0.9645 < 1.15 but > 0.85. The robustness of this model 
was checked by Y – randomization test. The low r2 and r2

CV values indicate that the good results in 
our original model are not due to a chance correlation or structural dependency of the training set. 

FA-PLS 
The number of optimum components was found to be 6 to obtain the final equation. Based 

on the standardized regression coefficients, the following variables were selected for the final 
equation: 
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pED50 = 0.193 * HP – 0.024 * MR – 0.544 * VI2 + 0.169* CI4 – 0.097 * CP + 0.251 * logP + 
2.654 * D + 0.213 * VDW      (3) 
n = 60, r = 0.907, r2 = 0.823, r2a = 0.803, SEE = 0.444, F = 41.0, P <0.001 
r2

CV = 0.778, SPRESS =0.497, PRESS = 13.1, SDEP = 0.471.   
Eq. (3) could explain 82.3% of the variance and predict 77.8% of the variance. The 

positive coefficient of the HP and CI4 indicates that the increase in the value of hanse polarity and 
connectivity index 4 of PET compounds is conducive to the activity. The calculated values 
according to Eq. (3) are presented in Table 3. The predictive ability of the selected model was also 
confirmed by external r2

CVext method. According to Tropsha et al., the proposed QSAR model is 
predictive as it satisfies all the conditions r2

CVext = 0.539 > 0.5, r2 =0.731 > 0.6, r2 - r2
0/ r2 = 0.0742 

< 0.1, r2 – r’2
0/ r2 = 0.0203 < 0.1, k = 0.8845 < 1.15 but > 0.85 and k’ = 0.9583 < 1.15 but > 0.85. 

The robustness of this model was checked by Y – randomization test (data not given). The low r2 

and r2
CV values indicate that the good results in our original model are not due to a chance 

correlation or structural dependency of the training set. 
PCRA 
When factor scores were used as the predictor parameters in a multiple regression equation 

using forward selection method (PCRA), the following equation was obtained: 
 pED50 = 0.878 (± 0.033) + 0.324 (± 0.034) fs1 + 0.354 (± 0.034) fs2 + 0.777 (± 0.034) fs3 
+ 0.210 (± 0.034) fs5 + 0.248 (± 0.034) fs6             (4) 
n = 60, r = 0.969, r2 = 0.940, r2a = 0.934, SEE = 0.257, F = 167.8, P <0.001 
r2

CV = 0.920, SPRESS =0.301, PRESS = 4.7, SDEP = 0.283.   
 
Eq. (4) could explain 94.0% of the variance and predict 92.0% of the variance. The variables 
(factor scores) used in Eq. (4) are perfectly orthogonal to each other. As factor scores are used, 
instead of selected descriptors, in MLR equation in PCRA and any one factor-score contains 
information from different descriptors, loss of information is thus avoided and the quality of 
PCRA equation is better than those derived from FA-MLR. From the factor scores used, 
significance of the original variables for modeling the activity can be obtained. Factor score 1 
indicates the importance of molar refractivity (MR), length and critical temperature of the entire 
molecule. Factor score 2 indicates the importance of enthalpy of formation and Gibbs energy of 
formation of the entire molecules. Factor score 3 indicates the importance of vander waals energy 
of the entire molecules. Factor score 5 signifies the importance of lipophilicity (logP) of the entire 
molecules, while factor score 6 indicates the importance of torsion energy of the entire molecules. 
The robustness of this model was checked by Y – randomization test (Data not given). The low r2 

and r2
CV values indicate that the good results in our original model are not due to a chance 

correlation or structural dependency of the training set. 
 

Table 3. Observed, calculated and predicted (LOO) anti-HIV activity data of PET derivatives. 
 

Comp. No Obsd Calcda Calcdb Calcdc 
Training Set 

1 
2 
4 
6 
7 
8 
9 

10 
11 
12 
13 
15 
16 
17 

 
-0.1139 
1.0000 
-0.5185 
0.2218 
-0.7404 
0.0227 
-0.0413 
-0.602 
0.3979 
0.8239 
-0.3424 
-0.4471 
1.0457 
0.3979 

 
-0.2794 
0.1455 
0.1273 
0.1831 
0.1783 
-0.0078 
0.1073 
-0.4381 
0.1657 
0.1012 
0.0391 
-0.3375 
0.6895 
0.6758 

 
-0.2199 
0.2452 
0.1456 
0.2413 
0.2250 
-0.1106 
0.2592 
-1.0758 
0.1628 
0.2555 
0.1565 
-0.2595 
0.9188 
0.8206 

 
-0.0795 
0.7287 
-0.3179 
0.2785 
-0.3640 
0.0811 
-0.4183 
-0.9869 
0.2183 
0.7908 
0.0683 
-0.0268 
1.0649 
0.6016 
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18 
19 
21 
22 
23 
24 
25 
26 
27 
28 
29 
31 
32 
33 
34 
35 
36 
37 
38 
40 
41 
43 
44 
45 
46 
47 
48 
49 
50 
52 
54 
55 
56 
57 
58 
59 
60 
61 
62 
64 
65 
66 
67 
68 
69 
70 

Test Set 
3 
5 

14 
20 
30 
39 
42 
51 

1.301 
0.5229 
1.6989 
1.301 

-0.1139 
-0.8062 
-0.716 

-0.3979 
0.1549 
-0.2041 
-0.113 
0.6989 
0.301 
0.301 

-0.4314 
-0.7243 
0.6989 
1.301 

0.8239 
2.0000 
2.0000 
0.6989 
0.5228 
1.6989 
1.0969 
1.0969 
0.0457 
2.2218 
1.3979 
1.8239 
2.2218 
2.1549 
2.0969 
1.8239 
2.5229 
1.3979 
1.7447 
1.886 

2.1549 
2.6989 
2.301 

1.9208 
1.7447 
1.886 
1.886 
0.959 

 
0.6021 
0.3979 
0.3979 
0.6989 
-0.1139 
1.5229 
0.6989 
1.3979 

0.8813 
0.9351 
0.8337 
0.8851 
-0.7370 
-0.5379 
-0.6140 
-0.0833 
0.1389 
0.0402 
-0.1694 
0.5930 
0.6895 
0.1644 
-0.0462 
-0.2661 
0.9365 
1.2628 
1.0952 
1.9980 
1.6848 
1.9799 
0.8345 
0.9324 
0.7804 
1.2961 
0.3715 
2.6464 
1.7414 
2.1412 
1.8350 
1.9236 
1.8822 
2.2395 
2.0370 
1.8133 
1.2975 
1.6678 
1.7387 
2.0994 
1.8018 
2.1538 
1.7028 
1.9507 
2.1902 
0.6103 

 
0.1059 
0.2543 
-0.6168 
0.8097 
0.0410 
2.1048 
1.0930 
1.7719 

0.7626 
1.0764 
0.9612 
0.9013 

-0.39225 
-0.2378 
-0.5438 

-0.40866 
-0.0109 
-0.1034 
-0.5118 
0.4388 
0.3901 
0.3640 
-0.0585 
0.0097 
0.9016 
1.0264 
0.8493 
1.8411 
1.5846 
1.8932 
0.7565 
0.8547 
0.8840 
1.3411 
0.3314 
2.4533 
1.7485 
2.1024 
1.9352 
1.9311 
1.9872 
2.3605 
2.0744 
1.8463 
1.5735 
1.6432 
1.8296 
2.1661 

2.02450 
2.2152 
1.5309 
1.5984 
2.1586 
0.8575 

 
-0.2073 
0.1004 
-0.6252 
1.0191 
0.0619 
1.8716 
1.3993 
1.2919 

0.8711 
0.7382 
1.3796 
1.0379 
-0.2644 
-0.5967 
-0.9963 
-0.3889 
0.2500 
0.0401 
-0.0374 
0.2375 
0.2559 
0.3807 
-0.4348 
-0.5020 
1.1781 
1.2246 
1.2451 
1.8150 
2.1349 
1.0522 
0.8806 
1.2918 
1.0822 
1.0335 
-0.2643 
2.0518 
1.7580 
1.8120 
2.1564 
2.0668 
2.2270 
1.7952 
2.3551 
1.773 

1.9741 
1.8819 
2.0643 
2.5130 
2.3199 
2.0003 
1.6880 
1.5551 
1.8508 
0.5769 
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53 
63 
71 

2.2218 
2.1589 
0.602 

1.8331 
1.9598 
0.1614 

2.1549 
1.9546 
0.3609 

Obsd – observed activity, Calcd – calculated activity, Pred – predicted activity, a using Eq. (2), b 
using Eq. (3) and c using Eq. (4). 
 
 

Table 4. Factor loadings of the variables after VARIMAX rotation. 
 
Variable 1 2 3 4 5 6 7 8 Commu

nality 
pED50 

HP 
MR 
PC 
CI1 
CI2 
CI3 
VI1 
VI2 
KP 
CI4 

LogP 
CT 
CP 
EF 
GF 
EV 
HF 
D 

TE 
VDW 

Variance 

0.324 
-0.059 
0.917 
0.874 
0.845 
0.777 
0.792 
0.857 
0.796 
0.871 
0.813 
0.480 
0.930 
-0.660 
-0.331 
-0.178 
0.94 

-0.308 
0.324 
-0.378 
0.657 
0.466 

0.353 
-0.114 
0.201 
0.313 
0.416 
0.476 
0.451 
0.304 
0.280 
0.322 
0.447 
0.238 
0.008 
-0.396 
-0.906 
-0.949 
0.070 
-0.907 
0.42 

-0.320 
0.274 
0.213 

0.777 
0.024 
0.171 
0.216 
0.219 
0.152 
0.256 
0.100 
0.001 
0.246 
0.230 
0.264 
0.086 
-0.308 
-0.165 
-0.133 
0.089 
-0.139 
0.140 
-0.302 
0.550 
0.076 

0.134 
0.976 
-0.132 
-0.137 
-0.024 
0.040 
0.07 

-0.221 
-0.164 
-0.137 
0.041 
-0.146 
0.158 
0.109 
0.084 
0.020 
0.124 
0.149 
0.252 
-0.039 
-0.268 
0.064 

0.21 
-0.075 
0.185 
0.178 
0.145 
0.229 
0.163 
0.261 
0.349 
0.051 
0.185 
0.751 
0.039 
-0.251 
-0.08 
-0.12 
0.003 
-0.075 
0.144 
-0.135 
0.084 
0.055 

0.247 
0.02 
0.12 
0.152 
0.186 
0.225 
0.21 

-0.027 
-0.007 
0.163 
0.13 
0.168 
0.144 
-0.261 
-0.117 
-0.104 
0.14 
-0.12 
0.128 
-0.79 
0.22 
0.054 

0.112 
0.122 
0.091 
0.063 
0.007 
0.047 
0.028 
0.142 
0.240 
-0.04 
0.019 
0.133 
0.221 
0.301 
-0.09 

-0.133 
0.180 
-0.091 
0.766 
-0.114 
0.082 
0.045 

-0.02 
-0.01 
0.093 
0.093 
0.03 

0.112 
0.042 
0.083 
0.248 
-0.02 
0.04 

0.004 
-0.154 
-0.23 

-0.031 
0.003 
-0.14 
-0.03 
0.007 
-0.002 
0.11 

0.010 

0.971 
0.991 
0.996 
0.997 
0.993 
0.975 
0.975 
0.984 
0.981 
0.974 
0.971 
0.990 
0.993 
0.975 
0.997 
0.995 
0.987 
0.990 
0.990 
0.996 
0.957 
0.983 

 
 

Table 5. Inter-correlation matrix for anti-HIV activity and important physicochemical variables. 
 

 pED50 D MR CP VDW HF logP EV 
pED50 

D 
MR 
CP 

VDW 
HF 

logP 
EV 

1 
0.5400 
0.5606 
-0.6638 
0.7478 
-0.5623 
0.6250 
0.4841 

 
1 

0.4880 
-0.2445 
0.4424 
-0.5575 
0.4904 
0.5307 

 
 

1 
-0.8267 
0.8475 
-0.5504 
0.7273 
0.8265 

 
 
 

1 
-0.8073 
0.6506 
-0.6991 
-0.6210 

 
 
 
 

1 
-0.6193 
0.6973 
0.6793 

 
 
 
 
 

1 
-0.5161 
-0.3809 

 
 
 
 
 
 

1 
0.5211 

 
 
 
 
 
 
 

1 
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Table 6. Results of leave-25%-out cross-validation. 
 

Equation No. of 
cyclesa 

Average regression coefficient q2 (Average 
pres) 

2 
 
 
 

3 
 
 
 

4 

4 
 
 
 

4 
 
 
 

4 

5.008 (± 0.033) - 0.175 (± 0.033) MR + 0.296 (± 
0.168) logP - 0.138 (± 0.033) CP + 0.080 (± 0.030) 
EV + 0.003 (± 002) HF+ 3.878 (± 1.148) D + 0.238 (± 
0.045) VDW 
0.153 (± 0.094) HP - 0.055 (± 0.035) MR - 0.447 (± 
0.381) VI2 + 0.165 (± 0.360) CI4 - 0.075 (± 0.034) CP 
+ 0.304 (± 0.161) logP + 2.743 (± 1.247) VDW 
0.876 (± 0.038) + 0.324 (± 0.038) fs1 + 0.353 (± 
0.038) fs2 + 0.776 (± 0.038) fs3 + 0.215 (± 0.038) fs5 
+ 0.244 (± 0.038) fs6 

 
0.746 (0.258) 

 
 
 

0.760 (0.242) 
 
 
 

0.910 (0.089) 
Average pres means average of absolute values of predicted residuals. 
a Compounds were deleted in 4 cycles in the following manner: (1, 5, 9,…, 57), (2, 6, 10,……, 
58), (3, 7, 11,……, 59) and (4, 8, 12,…, 60) 
 

4. Conclusions 
 
The structural and physicochemical requirements of PET derivatives for anti-HIV activity 

have been explored by the present QSAR study. The best QSAR model is obtained from PCRA 
(Eq. (4)) technique with explained and predicted variance of 94.0% and 92.0%, respectively. The 
quality of model came from stepwise regression, FA-MLR and FA-PLS (Eqs. (2 and 3)) are of 
comparable range with explained variance  81.7%, 82.3% and predicted variance 76.2%, 77.8%, 
respectively. All the developed QSAR models are having the following four descriptors MR, D, 
VDW and CP indicates that these variables are more important to explain the anti-HIV activity of 
PET compounds. The negative coefficient of MR and CP indicates that these parameters are 
detrimental to activity when they are increased. The positive coefficient of D and VDW indicates 
that these parameters are conducive to activity when they are increased. So we have concluded the 
QSAR study of PET compounds with the volume of substituent should be less mean while the 
density and lipophilicity of subtituents should be high for their anti-HIV activity. The information 
generated from the present study may be useful in the design of more potent PET derivatives as 
anti HIV agents. 
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