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A new counting polynomial, called Omega ( , )G xΩ , was recently proposed by Diudea. It 
is defined on the ground of “opposite edge strips” ops. The Sadhana polynomial 

 can also be calculated by ops counting. In this paper we compute these 
polynomials for some classes of 8 – cycle graphs. 
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1. Introduction 
 
Nano-era is a suitable name for the period started with the discovery of C60 fullerene and 

carbon nanotubes.1-3 It opened a new gate for the science and technology at nanometer scale with 
wide implications in the human activities. After the discovery of carbon nanotubes, the question 
about the possible existence of nanotubular forms of other elements was addressed by scientists 
and they tried to obtain inorganic nanostructures.4-6 Mathematical calculations are absolutely 
necessary to explore important concepts in chemistry. Mathematical chemistry is a branch of 
theoretical chemistry for discussion and prediction of the molecular structure using mathematical 
methods without necessarily referring to quantum mechanics. Chemical graph theory is an 
important tool for studying molecular structures. This theory had an important effect on the 
development of the chemical sciences. 

Let G(V,E) be a connected graph, with the vertex set V(G) and edge set E(G). Two edges e 
= uv and f = xy of G are called codistant e co f if they obey the following relation:7,8  
 

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + = . 
 

Relation co is reflexive, that is, e co e holds for any edge e of G; it is also symmetric, if e 
co f then f co e. In general, relation co is not transitive, an example showing this fact is the 
complete bipartite graph 2,nK . If “co” is also transitive, thus an equivalence relation, then G is 
called a co-graph and the set of edges });({:)( ecofGEfeC ∈=  is called an orthogonal cut oc 
of G , E(G) being the union of disjoint orthogonal cuts: 

1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . Klavžar9 has shown that relation co is a theta 
Djoković-Winkler relation.10,11 

 
 
 
 
 
 

_____________________ 
*Corresponding author: mghorbani@srttu.edu 

 



844 
 

Let e = uv and f = xy be two edges of G which are opposite or topologically parallel and 
denote this relation by e op f. A set of opposite edges, within the same face/ring, eventually 
forming a strip of adjacent faces/rings, is called an opposite edge strip ops, which is a quasi-
ortogonal cut qoc (i.e., the transitivity relation is not necessarily obeyed). Note that co relation is 
defined in the whole graph while op is defined only in a face/ring. The length of ops is maximal 
irrespective of the starting edge. Let m(G,s) be the number of ops strips of length s. The Omega 
polynomial is defined as12,13 

( ) ( , ) s
s

x m G s xΩ = ⋅∑  

 
The first derivative (in x=1) equals the number of edges in the graph 

(1) ( , ) ( )
s

m G s s e E G′Ω = ⋅ = =∑  

An example is given in Figure 2, which illustrates just the pattern of TiO2 lattice. 
 

 
Fig. 1. TiO2 pattern; counting polynomial examples: 

3 5( , ) 3 3G x x xΩ = + ; ( ,1) 24 ( )G e G′Ω = = ; 
19 21( , ) 3 3Sd G x x x= + ; ( ,1) 120 ( )Sd G Sd G′ = = ; 

 
The Sadhana index Sd(G) was defined by Khadikar et al.14,15 as  

( ) ( , )(| ( ) | )sSd G m G s E G s= −∑ , 
where m(G,s) is the number of strips of length s. The Sadhana polynomial Sd(G,x) was defined by 
Ashrafi et al.16 as  

| ( )|( ) ( , ) E G s
sSd x m G s x −= ⋅∑ . 

 Clearly, the Sadhana polynomial can be derived from the definition of Omega polynomial 
by replacing the exponent s by |E(G)-s|. Then the Sadhana index will be the first derivative of 
Sd(x) evaluated at x=1.  
 The aim of this study is to compute the Omega and Sadhana polynomials of 8 – cycles 
graphs. Here our notations are standard and mainly taken from [17 - 22]. 
 

2. Main results 
 
In this section by using Omega and Sadhana polynomials we compute these polynomials 

for three classes of bipartite graphs. Finally, by using a relation between Omega and PI 
polynomials we compute the PI polynomial of them. To do this we need definition of some graphs 
mentioned above. 

 
3. Polyomino chains of 8– Cycles 
 
A k-polyomino system is a finite 2-connected plane graph such that each interior face (also 

called cell) is surrounded by a regular 4k-cycle of length one. In other words, it is an edge-
connected union of cells, see Klarner [23].  
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Fig. 2. The zig-zag chain of 8-cycles. 
 
Example 1. Consider the graph G shown in Figure 3. One can see this graph has exactly 2 strips 
C1 and C2. On the other hand |C1| = 3 and |C2| = 2. Hence, 

3 2( ) 3 10x x xΩ = +  and  26 27( ) 3 10 .Sd x x x= +
 

Example 2. For the graph H depicted in Figure 4, there exist two distinct strips C1 and C2. 
Similarly, |C1| = 3 and |C2| = 2. Hence, 

3 2( ) 7 18x x xΩ = +  and 28 2 28 1( ) 7 18 .n nSd x x x− −= +  
e2

e1

 
Fig. 3. The zig-zag chain of 8-cycles, n = 1. 

e2

e1

 
Fig. 4. The zig-zag chain of 8-cycles, n =2. 

 
In generally, this graph has two distinct strips of lengths 2 and 3, respectively. In other 

words we have the following Theorem: 
 
Theorem 1. Consider the graph of 2-polyomino system depicted in Figure 2. Then: 

3 2( ) (4 1) (8 2)x n x n xΩ = − + +  and 28 2 28 1( ) (4 1) (8 2) .n nSd x n x n x− −= − + +  
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2

Consider now, another version of 2-polyomino system Hn. when n = 1(Figure 5), there exist three 
strips of length 2, 3 and 4, respectively. In other words,  

4 3( ) 2 13x x x xΩ = + +  and  32 33 34( ) 2 13 .Sd x x x x= + +
Similarly for n = 2 (Figure 6), there exist three strips of length 2, 3 and 4, respectively. This 
implies 4 3( ) 2 5 24 2x x x xΩ = + +  and  67 68 69( ) 2 5 24Sd x x x x= + + .

n

 By continuing this method it is easy to check that this graph has only three strips 
of length 2, 3 and 4, respectively. Thus by computing number of strips of equal size and substitute 
in the Omega polynomial the following Theorem can be deduced: 

 
Theorem 2. Let Hn be the graph of 2-polyomino system shown in Figure 6. Then: 

4 3 2

35 3 35 2 35 1

( ) (3 1) (11 2)

( ) (3 1) (11 2) .n n

x nx n x n x and

Sd x nx n x n x− − −

Ω = + − + +

= + − + +
 

e2 e1

e3

 
Fig. 5. The graph of 2-polyomino system Hn, n = 1. 

e1
e2

e3

 
Fig. 6. The graph of 2-polyomino system Hn, n = 2. 

 
4. Triangular Benzenoid 
 
In this section we compute counting polynomials mentioned in the text of triangular 

benzenoid graphs (see Figure 7). At first consider the graph of triangular benzenoid G[n] for n = 1. 
The Omega and Sadhana polynomials are 2( ) 3x xΩ =  and 4( ) 3x xΩ = , respectively. By 
continuing this method, there exist n strips of length 2, 3, …, n + 1, respectively. In other words, if 
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C1, C2, …, Cn be all strips of G[n], then there are 3 strips equivalent with |Ci|, i = 1, 2, …Hence we 
proved the following Theorem: 

 
Theorem 3. 

2 3 1( [ ], ) 3( )nG n x x x x +Ω = + + +L  and | | 2 | | 3 | | 1( [ ], ) 3( )E E E nSd G n x x x x− − −= + + +L − , 
where |E| = 28n + 1. 

.
.

.

.
.

.

1

2

3

n

 
Fig. 7. The graph of triangular benzenoid graphs. 

 
 
5. PI Index 
 
Let ∑ be the class of finite graphs. A topological index is a function Top from ∑ into real 

numbers with this property that Top(G) = Top(H), if G and H are isomorphic. Obviously, the 
number of vertices and the number of edges are topological index. The Wiener24 index is the first 
reported distance based topological index and is defined as half sum of the distances between all 
the pairs of vertices in a molecular graph. If , ( )x y V G∈  then the distance between x 
and y is defined as the length of any shortest path in G connecting x and y. 

( , )Gd x y

Khadikar introduced another index called Padmakar-Ivan (PI) index 25,26. The PI index of 
a graph G is defined as: 

PI = PI (G) = Σ [meu(e|G) + m ev(e|G)] 
where for edge e = uv, meu(e|G) is the number of edges of G lying closer to u than v, mev (e|G) is 
the number of edges of G lying closer to v than u and summation goes over all edges of G. Similar 
to Sadhana polynomial we can define the PI polynomial. Then the PI index will be the first 
derivative of PI(x) evaluated at x=1.  

Let Ce be a strips containing all parallel edges with e. If G be a bipartite graph it is well – 

known fact that | |( ) ( , ) E s
sPI x s m G s x −= × ⋅∑ . In other words, by using Omega 

polynomial in bipartite graph we can compute the PI polynomial and then PI index. Hence the 
following Theorems are resulted from Theorems 1, 2 and 3, respectively: 

Theorem 4. Consider the graph of 2-polyomino system depicted in Figure 2. Then: 
28 2 28 1( ) 3(4 1) 2(8 2) .n nPI x n x n x− −= − + +  

 
Theorem 5. Let Hn be the graph of 2-polyomino system shown in Figure 6. Then: 

35 3 35 2 35 1( ) 4 3(3 1) 2(11 2) .n nPI x nx n x n x− −= + − + + n−  
 
Theorem 6. For the graph of triangular benzenoid graphs depicted in Figure 7 we have: 
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−| | 2 | | 3 | | 1( [ ], ) 3(2 3 ( 1) )E E E nPI G n x x x n x− − −= + + + +L . 
where |E| = 28n + 1. 
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