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The study of the electrodeposition and anodic oxidation processes of ZnMn alloy 
submicron wires is reported; ZnMn wire arrays were electrodeposited using a pulse current 
technique and an aqueous solution containing 0.2 mol dm-3 Zn(II)-EDTA + 0.2 mol dm-3 
MnSO4 + 0.6 mol dm-3 sodium citrate. The obtained alloy was anodized at a current 
constant density, in a methoxyethanol solution containing sodium hydroxide and in an 
aqueous potassium zincate solution. Photoluminescence spectra and SEM images showed 
the presence of the oxide layer on the surface of the anodized ZnMn wires.  
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1. Introduction 
 
Zinc oxide is a semiconductor with a wide band gap and natural n-type electrical 

conductivity, having a wurtzite structure. By replacing a fraction of cations of this host 
semiconductor material with transition metal ions could be obtained a promising diluted magnetic 
semiconductor (DMS) material for spintronics applications [1-4]. It was predicted that some of 
these materials should be ferromagnetic above room temperature [1-4]. By doping ZnO structures 
with transition metals ions, such as manganese or cobalt ions, may lead to the formation of various 
precipitates, which could have an influence on the magnetic properties [5,6]. Mn is known to be a 
fast diffuser in ZnO, which results often in highly inhomogeneous doping, formation of foreign 
phases as well as Mn precipitates. Low temperature growth conditions should be selected to 
minimize Mn diffusion and formation of various Mn-related oxide.  

The aim of this work was to investigate the processes of the electrodeposition and anodic 
oxidation of ZnMn alloy wires prepared by template method, in order to obtain manganese doped 
ZnO wires. 

 
2. Experimental 
 
The synthesis of metallic wires was performed using a 30 μm thick polycarbonate 

membrane (Makrofol N, Bayer) with pore diameter around 600 nm and pores density 108 cm-2. A 
thin gold film, which was to play later the role of the cathode for the codeposition of Zn and Mn, 
was deposited by sputtering on one side of the membrane; this film was subsequently reinforced 
by electrochemical deposition of copper. The chemical compositions of the solutions used to 
investigate the preparation process of ZnMn alloy microwires and their anodizing are presented in 
Table 1. ZnMn alloy wires were electrodeposited using a pulse technique [7] from the solution 1. 
Supplementary, in a comparative voltammetric study, similar solutions but without manganese 
compound (solution 2) and without zinc compound (solution 3) were used. The electrodeposition 
of ZnMn alloy was carried out at room temperature in a glass cell with a platinum foil (surface 
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area 4cm2) as counter electrode and a commercial saturated calomel electrode (SCE) as the 
reference electrode. The surface area of the membrane exposed at electrodeposition solutions (1-3) 
was 2cm2.  After the electrodeposition process the polymer membrane was dissolved in 
dichloromethane. The ZnMn wires were anodized to various voltages at 0.075 mAcm-2 current 
density either in organic solution 4 [8] or in aqueous solution 5. The electrochemical 
measurements were carried out with an Autolab PGSTAT 30 potentiostat/galvanostat connected to 
a computer. The metallic and oxide wires were imaged by scanning electron microscopy (SEM), 
using a FEI Quanta InspectF Scanning Electron Microscope equipped for chemical composition 
measurements with an EDX device from EDAX. X-ray diffraction (XRD) analyses were 
performed on a Bruker D8 Advance apparatus, using Cu-Kα radiation with λ=0.15405 nm. 
Photoluminescence (PL) spectra have been recorded using a lock-in technique and a standard 
luminescence set-up consisting in two monochromators for excitation and emission, a Xe-150W 
lamp as light source and a photomultiplier as light detector. 

 
3. Results and discussion 

 
Table 1. Chemical composition of the used solutions. 

 
Solution Composition 
1 0.2 mol dm-3 Zn(II)-EDTA + 0.2 mol dm-3 MnSO4 + 0.6 mol dm-3 sodium citrate 

aqueous solution, pH 5.8 [7] 
2 0.2 mol dm-3 Zn(II)-EDTA + 0.6 mol dm-3 sodium citrate aqueous solution,  pH 5.8  
3 0.2 mol dm-3 MnSO4 + 0.6 mol dm-3 sodium citrate + 0.2 mol dm-3 EDTA aqueous 

solution, pH 5.8 
4 0.0125 mol dm-3 NaOH + 0.1 mol dm-3 hexamethylenetetramine in methoxyethanol 
5 Potassium zincate saturated aqueous solution prepared as in [8]  
 

Fig.1a presents comparatively linear voltammograms obtained for cathodic process in 
solutions 1-3 listed in Table 1 at a sweep rate of 5 mVs-1, using polycarbonate membranes. The 
cathodic scan shows clearly an increase of the cathodic current in the potential region –1  -1.5 V 
and a peak at around -1.3 V for ZnMn or Zn deposition) to formation of metallic deposit [9], 
followed by a sharp increase of current assigned to massive hydrogen formation and evolution. 
The manganese reduction peak obtained in solution 3 is observed at around -1.1 V.  
 

Fig.1.(a) Linear voltammetric curves obtained for a Cu/Au/polycarbonate membrane 
electrode in the solutions from Table 1: ZnMn (using solution 1); Zn (using solution 2); 
Mn (using solution 3); scan rate 5 mVs-1; (b) Typical pulse electrodeposition cycles 
showing the voltage recorded during the cathodic and rest stages: 1) the first cycles; 2)  
                                                              after 30 min cycling 

 
The results suggest that the electrodeposition of zinc in membrane pores takes place 

together with hydrogen evolution, although a model [10] for the electrodeposition of zinc in acidic 
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sulphates electrolytes also proposed the formation of ZnH, ZnO, ZnOH species in the cathodic 
peak region. 

Experimental investigations have shown that the pores are filled non-uniformly [11] using 
direct electrolysis current for the deposition. In our experiments, we prepared ZnMn alloys as 
wires by pulse plating during 70 min, with a cathodic pulse of current density of 7 mAcm-2 applied 
for 50 ms (pulse time), followed by a relaxation time of 20 ms corresponding to the current 
interruption. The resulted voltage cycles during filling of the membrane pores are presented in 
Fig.1b, where an important shift of deposition potential toward high cathodic potentials is 
observed; this phenomenon may be attributed mainly to the diffusion of metallic ions inside the 
membrane pores.  

Fig. 2 shows SEM images of ZnMn wires grown vertically from Cu/Au substrate having 
around 600 nm in diameter; one can observe that the pulsed electrodeposition led to a stratified 
growth of the wires. 

Fig.2. SEM micrographs of ZnMn wires grown into pores of polycarbonate membrane)               
by pulse electrodeposition, with a cathodic current density of  7 mAcm-2; tpulse=50 ms,  
                                           toff=20 ms; (a) general view; (b) detail 

 
In order to discuss a possible mechanism for obtaining manganese doped ZnO wires by 

ZnMn alloy anodizing, we mention that the involved intermediate products must be insoluble in 
the solution used for anodization.  

Thus, in solution 4 containing sodium hydroxide, the anodic process could be described by 
the following equations of EC mechanism:  

 
 Zn – 2 e- → Zn2+      (1) 

 
Zn2+ + 2 OH- → ZnO + H2O     (2) 

 
The anodizing process of zinc deposit in solution 5 can be simply represented by another 

EC mechanism, involving the equation (1) followed by a chemical precipitation according to eq. 
(3) [8]: 

 
 Zn2+ + Zn(OH)4

2-  → 2 ZnO↓ + 2 H2O               (3)                   
  

Fig. 3a shows the dependence of anodic current density of the electrode potential during 
anodic polarization of ZnMn wire array electrode in the solutions 4 and 5, respectively.  
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Fig.3. (a) Anodic polarization curves of the ZnMn wires in the solutions 4 (curve 1) and 5 
(curve 2) listed in Table 1; (b) electrode potential transient during anodization of ZnMn 
wires grown on Cu/Au substrate (array shown in Fig.2) using anodic current density of  
             0.075 mAcm-2 in the solutions 4 (curve 1) and 5 (curve 2) listed in Table 1 

 
 

We may interpret that the surface layer created initially by anodizing of ZnMn wires in the 
solution 4 (Fig.3a, curve 1) allows the transport of the cations and their chemical combination with 
OH- ions at the interface with anodizing solution; as a result, an increase of the oxide layer 
thickness takes place during anodizing process. In the solution 5 (Fig.3a, curve 2), after a first 
oxide formation process a quasi-passive layer is obtained in a restricted region of electrode 
potentials (-0.75 ÷ -0.65V), with a small anodic current of electrolysis; at these potential values, 
the oxide layer should contain manganese oxide as MnO or Mn3O4 [12]. 

 

 

 

 
Fig.4. Morphology of the ZnMn alloy wires anodized for 4000 s at current density of 0.075 mAcm-2 in the 

solutions 4 (SEM images(a) and (b)) and 5 (SEM images (c) and (d)) 
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be due to formation of ZnO compound either during metallic wires preparation [10] or by 
oxidation of ZnMn wires in air. 

 
 
4. Conclusions 
 
We have presented our results about preparation of ZnMn alloy submicron wires by pulse 

electrodeposition and their anodization in two different solutions: a methoxyethanol solution 
containing sodium hydroxide and a potassium zincate aqueous solution, respectively. ZnMn alloy 
wires (having around 600 nm in diameter) prepared by pulse plating from a sulphate solution 
containing both zinc and manganese ions are monophasic (a Zn2.92Mn1.08 phase). Partial 
anodizing of ZnMn wires at current density of 0.075 mAcm-2 in aqueous zincate solution led to 
formation of manganese-rich wires, due to ZnO chemical dissolution in the anodizing solution. 
SEM images and XRD analysis showed the presence of the oxide layer as an amorphous phase on 
the surface of the anodized ZnMn wires. An aggregation process of the wires was observed after 
the anodization in both solutions. The photoluminescence spectra of anodized ZnMn wires showed 
a small UV emission and the absence of the visible emission band which suggest that surface 
oxide layer also contains manganese ions. 
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