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Instead of conventional waveguides, photonic crystal waveguides are preferred due to 
better confinement of light within air core medium and zero radiation losses at the sharp 
bends. In this paper, we have designed one-dimensional (1D) photonic crystal waveguides 
for different parametrical values. It is observed that as the number of cladding stacks 
increased the oscillation of light waves is suppressed which is helpful to provide a better 
confinement of light in air guiding medium. It is also noted that in omnidirectional based 
waveguide, the guided mode can lie and well confined in the active region with zero 
propagation losses irrespective to the incident angle.  
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1. Introduction 
 
Earlier optical waveguides were the natural replacement over the metallic waveguides due 

its losses occurred at optical frequencies. In dielectric waveguides, the reflection is restricted to 
small incidence angles with respect to the waveguide surface and light  is  guided  by  total  
internal  reflection  at  the boundary of  the  waveguide. But in optical waveguides, the radiation 
losses occurred at the bending cannot be ignored. In order to suppress these losses, the radius of 
curvature of waveguides needed to be large with respect to the wavelength. To achieve better 
confinement of light in a waveguide, it is desirable to move away from the common total internal 
reflection occurs in the conventional waveguides.  In such circumstances, the discovery of 
photonic crystals [1-2] has put a new alteration on light guiding. Recently, the study of group 
velocity in photonic crystals has opened a door to realize new photonic devices [3].  One major 
advantage of photonic crystals is the possibility of designing electromagnetic modes. The ability to 
modify the dispersion diagram of a guided mode in a photonic crystal waveguide is very useful for 
practical applications. In photonic crystal waveguides, the transverse guiding is accomplished by 
distribution reflection within the cladding layers [4-5]. document In addition, the active layer can 
be made of lower refractive index than cladding layers due to which the transverse light 
propagation lies in the forbidden band of one-dimensional (1D) photonic crystals (clads). 
Presently, for the realization of optical integrated circuits the planer photonic crystal waveguides 
have became an essential building block due to its high transmission efficiency of light at sharp 
corners. Recently, much attention has been paid towards the study of omnidirectional reflectors [6-
9]. If omnidirectional reflectors are used as a clad, better confinement of light can be expected. In 
addition there is no limitation of incidence angle of light as well. This mechanism is helpful for 
redirecting the scattered light in any direction completely within the guiding layer.                    
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In this paper, we have first designed the 1D photonic crystal waveguides for different 
parametrical values. To observe better field distribution in active region, we have designed 
omnidirectional reflector which is used as cladding layer for the waveguides. In section two, the  

mathematical approach has been presented; the results and discussion are summarized in 
section third. Finally, section fourth concludes the paper. 

 
2. Design approach 
 
To study the guiding mechanism of 1D photonic crystal waveguide we have assumed that 

the air guiding layer is sandwiched between two 1D photonic crystals. One-dimensional photonic 
crystals are composed of high and low refractive index layers respectively. The considered 
structure of one-dimensional photonic crystal waveguide is shown in figure 1.  

 
 

Fig. 1. Schematic of 1D photonic crystal waveguide 
 

The cladding consists of two alternate layers of refractive index n1 and n2 and thickness d1 
and d2. The refractive index and thickness of core region are nc and lc respectively. By employing 
transfer matrix method, the dispersion relation between the angular frequency ‘ω’ and the 
tangential component ‘β’ as well as Bloch wavevector ‘K’ is expressed as [3] 
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where in case of  transverse electric polarization, A and D is defined as  
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The solutions of Bloch wave vector ‘K’ gives forbidden and pass bands.  After the 

solution of ‘K’ we have obtained the omnidirectional reflection bands by substituting it in equation 
(4).  The expression for reflectivity is expressed as  
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polarizations are defined by the lower bandedge at the normal incidence (θ=00) and the upper 
bandedge at the perpendicular incidence (θ=900). The normalized frequency ranges of 
omnidirectional reflection bands for TE wave are 0.31-0.39 and 0.72-0.73 (in the units of ωd/c). In 
figure 4, the white region, dark gray region and light gray strips are corresponding to the pass, 
forbidden and omni bands respectively. Once the range of omnidirectional reflection bands are 
known efficient guiding of light can be done in the waveguide. 

 

 
Fig. 4. Projected band diagram of 1D photonic crystal showing omnidirectional bands for 

TE polarization. 
 

If we used our designed omnidirectional reflectors for a waveguide then guided mode can 
lie and well confined in the active region with zero propagation losses. Therefore, we have plotted 
figure 5 in which the near field intensity of fundamental mode is depicted. Here, the 
omnidirectional reflectors designed for 25 bilayers of alternate layers of n1=1.3 and n2=2.4 is used 
as clad at 1.55µm wavelength.  

 
Fig. 5. Electric field Intensity in 1D photonic crystal waveguide for TE polarization. 

 
 

It is observed that the electric field is well guided in the guiding region where the 
refractive index of guiding layer is lower than the refractive indices of the cladding layers. It is 
also observable that the field strength decays rapidly on both side of the air guiding layer. The 
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assumed thicknesses of upper and lower cladding layers are  µm2 ba however, the thickness 

of air guiding medium is  µm5.0cl . In simple words, the wider omni band means wider 
frequency (wavelength of light) selection is permissible to forbid hundred percent of light after 
striking upon the omnidirectional reflectors. If we used these reflectors as a cladding 100 % light 
will be strongly reflected after made incident and enforced to forward in the guiding medium to 
give better confinement.    

 
 
4. Conclusions 
 
By employing transfer matrix method the designing of 1D photonic crystal waveguides 

have been carried out. Initially, we have designed and analyzed the near field in the active air 
region for different parametrical values. It is observed that the confinement of near field is better at 
optimized parametrical values. In addition, the oscillation of light waves either the sides of core 
region is suppressed for optimal values of structural and optical parameters. The suppression of 
oscillation of waves is useful to confine maximum part of incident light. Further, we have obtained 
the omni bands for TE polarization which provides 100% the reflection of light irrespective to the 
angle of incidence. In omnidirectional reflector based waveguide it is found that field is well 
confined within the air guiding medium where the refractive index of guiding layer is lower than 
the refractive indices of the cladding layers. 
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